diff options
author | Stefan van der Walt <stefan@sun.ac.za> | 2008-08-23 23:17:23 +0000 |
---|---|---|
committer | Stefan van der Walt <stefan@sun.ac.za> | 2008-08-23 23:17:23 +0000 |
commit | 5c86844c34674e3d580ac2cd12ef171e18130b13 (patch) | |
tree | 2fdf1150706c07c7e193eb7483ce58a5074e5774 /numpy/doc/basics.py | |
parent | 376d483d31c4c5427510cf3a8c69fc795aef63aa (diff) | |
download | numpy-5c86844c34674e3d580ac2cd12ef171e18130b13.tar.gz |
Move documentation outside of source tree. Remove `doc` import from __init__.
Diffstat (limited to 'numpy/doc/basics.py')
-rw-r--r-- | numpy/doc/basics.py | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/numpy/doc/basics.py b/numpy/doc/basics.py new file mode 100644 index 000000000..dfb8fe74d --- /dev/null +++ b/numpy/doc/basics.py @@ -0,0 +1,137 @@ +""" +============ +Array basics +============ + +Array types and conversions between types +========================================= + +Numpy supports a much greater variety of numerical types than Python does. +This section shows which are available, and how to modify an array's data-type. + +========== ========================================================= +Data type Description +========== ========================================================= +bool Boolean (True or False) stored as a byte +int Platform integer (normally either ``int32`` or ``int64``) +int8 Byte (-128 to 127) +int16 Integer (-32768 to 32767) +int32 Integer (-2147483648 to 2147483647) +int64 Integer (9223372036854775808 to 9223372036854775807) +uint8 Unsigned integer (0 to 255) +uint16 Unsigned integer (0 to 65535) +uint32 Unsigned integer (0 to 4294967295) +uint64 Unsigned integer (0 to 18446744073709551615) +float Shorthand for ``float64``. +float32 Single precision float: sign bit, 8 bits exponent, + 23 bits mantissa +float64 Double precision float: sign bit, 11 bits exponent, + 52 bits mantissa +complex Shorthand for ``complex128``. +complex64 Complex number, represented by two 32-bit floats (real + and imaginary components) +complex128 Complex number, represented by two 64-bit floats (real + and imaginary components) +========== ========================================================= + +Numpy numerical types are instances of ``dtype`` (data-type) objects, each +having unique characteristics. Once you have imported NumPy using + + :: + + >>> import numpy as np + +the dtypes are available as ``np.bool``, ``np.float32``, etc. + +Advanced types, not listed in the table above, are explored in +section `link_here`. + +There are 5 basic numerical types representing booleans (bool), integers (int), +unsigned integers (uint) floating point (float) and complex. Those with numbers +in their name indicate the bitsize of the type (i.e. how many bits are needed +to represent a single value in memory). Some types, such as ``int`` and +``intp``, have differing bitsizes, dependent on the platforms (e.g. 32-bit +vs. 64-bit machines). This should be taken into account when interfacing +with low-level code (such as C or Fortran) where the raw memory is addressed. + +Data-types can be used as functions to convert python numbers to array scalars +(see the array scalar section for an explanation), python sequences of numbers +to arrays of that type, or as arguments to the dtype keyword that many numpy +functions or methods accept. Some examples:: + + >>> import numpy as np + >>> x = np.float32(1.0) + >>> x + 1.0 + >>> y = np.int_([1,2,4]) + >>> y + array([1, 2, 4]) + >>> z = np.arange(3, dtype=np.uint8) + array([0, 1, 2], dtype=uint8) + +Array types can also be referred to by character codes, mostly to retain +backward compatibility with older packages such as Numeric. Some +documentation may still refer to these, for example:: + + >>> np.array([1, 2, 3], dtype='f') + array([ 1., 2., 3.], dtype=float32) + +We recommend using dtype objects instead. + +To convert the type of an array, use the .astype() method (preferred) or +the type itself as a function. For example: :: + + >>> z.astype(float) + array([0., 1., 2.]) + >>> np.int8(z) + array([0, 1, 2], dtype=int8) + +Note that, above, we use the *Python* float object as a dtype. NumPy knows +that ``int`` refers to ``np.int``, ``bool`` means ``np.bool`` and +that ``float`` is ``np.float``. The other data-types do not have Python +equivalents. + +To determine the type of an array, look at the dtype attribute:: + + >>> z.dtype + dtype('uint8') + +dtype objects also contain information about the type, such as its bit-width +and its byte-order. See xxx for details. The data type can also be used +indirectly to query properties of the type, such as whether it is an integer:: + + >>> d = np.dtype(int) + >>> d + dtype('int32') + + >>> np.issubdtype(d, int) + True + + >>> np.issubdtype(d, float) + False + + +Array Scalars +============= + +Numpy generally returns elements of arrays as array scalars (a scalar +with an associated dtype). Array scalars differ from Python scalars, but +for the most part they can be used interchangeably (the primary +exception is for versions of Python older than v2.x, where integer array +scalars cannot act as indices for lists and tuples). There are some +exceptions, such as when code requires very specific attributes of a scalar +or when it checks specifically whether a value is a Python scalar. Generally, +problems are easily fixed by explicitly converting array scalars +to Python scalars, using the corresponding Python type function +(e.g., ``int``, ``float``, ``complex``, ``str``, ``unicode``). + +The primary advantage of using array scalars is that +they preserve the array type (Python may not have a matching scalar type +available, e.g. ``int16``). Therefore, the use of array scalars ensures +identical behaviour between arrays and scalars, irrespective of whether the +value is inside an array or not. NumPy scalars also have many of the same +methods arrays do. + +See xxx for details. + +""" |