diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2018-07-31 00:41:28 -0700 |
---|---|---|
committer | GitHub <noreply@github.com> | 2018-07-31 00:41:28 -0700 |
commit | 7f4579279a6a6aa07df664b901afa36ab3fc5ce0 (patch) | |
tree | 3524c05c661f4948eabf066b46b5ad3aaf6ad617 /numpy/doc/basics.py | |
parent | 24960daf3e326591047eb099af840da6e95d0910 (diff) | |
parent | 9bb569c4e0e1cf08128179d157bdab10c8706a97 (diff) | |
download | numpy-7f4579279a6a6aa07df664b901afa36ab3fc5ce0.tar.gz |
Merge branch 'master' into ix_-preserve-type
Diffstat (limited to 'numpy/doc/basics.py')
-rw-r--r-- | numpy/doc/basics.py | 70 |
1 files changed, 35 insertions, 35 deletions
diff --git a/numpy/doc/basics.py b/numpy/doc/basics.py index dac236644..4d3ab046e 100644 --- a/numpy/doc/basics.py +++ b/numpy/doc/basics.py @@ -9,36 +9,36 @@ Array types and conversions between types NumPy supports a much greater variety of numerical types than Python does. This section shows which are available, and how to modify an array's data-type. -========== ========================================================== -Data type Description -========== ========================================================== -bool_ Boolean (True or False) stored as a byte -int_ Default integer type (same as C ``long``; normally either - ``int64`` or ``int32``) -intc Identical to C ``int`` (normally ``int32`` or ``int64``) -intp Integer used for indexing (same as C ``ssize_t``; normally - either ``int32`` or ``int64``) -int8 Byte (-128 to 127) -int16 Integer (-32768 to 32767) -int32 Integer (-2147483648 to 2147483647) -int64 Integer (-9223372036854775808 to 9223372036854775807) -uint8 Unsigned integer (0 to 255) -uint16 Unsigned integer (0 to 65535) -uint32 Unsigned integer (0 to 4294967295) -uint64 Unsigned integer (0 to 18446744073709551615) -float_ Shorthand for ``float64``. -float16 Half precision float: sign bit, 5 bits exponent, - 10 bits mantissa -float32 Single precision float: sign bit, 8 bits exponent, - 23 bits mantissa -float64 Double precision float: sign bit, 11 bits exponent, - 52 bits mantissa -complex_ Shorthand for ``complex128``. -complex64 Complex number, represented by two 32-bit floats (real - and imaginary components) -complex128 Complex number, represented by two 64-bit floats (real - and imaginary components) -========== ========================================================== +============ ========================================================== +Data type Description +============ ========================================================== +``bool_`` Boolean (True or False) stored as a byte +``int_`` Default integer type (same as C ``long``; normally either + ``int64`` or ``int32``) +intc Identical to C ``int`` (normally ``int32`` or ``int64``) +intp Integer used for indexing (same as C ``ssize_t``; normally + either ``int32`` or ``int64``) +int8 Byte (-128 to 127) +int16 Integer (-32768 to 32767) +int32 Integer (-2147483648 to 2147483647) +int64 Integer (-9223372036854775808 to 9223372036854775807) +uint8 Unsigned integer (0 to 255) +uint16 Unsigned integer (0 to 65535) +uint32 Unsigned integer (0 to 4294967295) +uint64 Unsigned integer (0 to 18446744073709551615) +``float_`` Shorthand for ``float64``. +float16 Half precision float: sign bit, 5 bits exponent, + 10 bits mantissa +float32 Single precision float: sign bit, 8 bits exponent, + 23 bits mantissa +float64 Double precision float: sign bit, 11 bits exponent, + 52 bits mantissa +``complex_`` Shorthand for ``complex128``. +complex64 Complex number, represented by two 32-bit floats (real + and imaginary components) +complex128 Complex number, represented by two 64-bit floats (real + and imaginary components) +============ ========================================================== Additionally to ``intc`` the platform dependent C integer types ``short``, ``long``, ``longlong`` and their unsigned versions are defined. @@ -114,10 +114,10 @@ properties of the type, such as whether it is an integer:: >>> d dtype('int32') - >>> np.issubdtype(d, int) + >>> np.issubdtype(d, np.integer) True - >>> np.issubdtype(d, float) + >>> np.issubdtype(d, np.floating) False @@ -155,11 +155,11 @@ with 80-bit precision, and while most C compilers provide this as their ``long double`` identical to ``double`` (64 bits). NumPy makes the compiler's ``long double`` available as ``np.longdouble`` (and ``np.clongdouble`` for the complex numbers). You can find out what your -numpy provides with``np.finfo(np.longdouble)``. +numpy provides with ``np.finfo(np.longdouble)``. NumPy does not provide a dtype with more precision than C -``long double``s; in particular, the 128-bit IEEE quad precision -data type (FORTRAN's ``REAL*16``) is not available. +``long double``\\s; in particular, the 128-bit IEEE quad precision +data type (FORTRAN's ``REAL*16``\\) is not available. For efficient memory alignment, ``np.longdouble`` is usually stored padded with zero bits, either to 96 or 128 bits. Which is more efficient |