summaryrefslogtreecommitdiff
path: root/numpy/doc/basics.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2018-07-31 00:41:28 -0700
committerGitHub <noreply@github.com>2018-07-31 00:41:28 -0700
commit7f4579279a6a6aa07df664b901afa36ab3fc5ce0 (patch)
tree3524c05c661f4948eabf066b46b5ad3aaf6ad617 /numpy/doc/basics.py
parent24960daf3e326591047eb099af840da6e95d0910 (diff)
parent9bb569c4e0e1cf08128179d157bdab10c8706a97 (diff)
downloadnumpy-7f4579279a6a6aa07df664b901afa36ab3fc5ce0.tar.gz
Merge branch 'master' into ix_-preserve-type
Diffstat (limited to 'numpy/doc/basics.py')
-rw-r--r--numpy/doc/basics.py70
1 files changed, 35 insertions, 35 deletions
diff --git a/numpy/doc/basics.py b/numpy/doc/basics.py
index dac236644..4d3ab046e 100644
--- a/numpy/doc/basics.py
+++ b/numpy/doc/basics.py
@@ -9,36 +9,36 @@ Array types and conversions between types
NumPy supports a much greater variety of numerical types than Python does.
This section shows which are available, and how to modify an array's data-type.
-========== ==========================================================
-Data type Description
-========== ==========================================================
-bool_ Boolean (True or False) stored as a byte
-int_ Default integer type (same as C ``long``; normally either
- ``int64`` or ``int32``)
-intc Identical to C ``int`` (normally ``int32`` or ``int64``)
-intp Integer used for indexing (same as C ``ssize_t``; normally
- either ``int32`` or ``int64``)
-int8 Byte (-128 to 127)
-int16 Integer (-32768 to 32767)
-int32 Integer (-2147483648 to 2147483647)
-int64 Integer (-9223372036854775808 to 9223372036854775807)
-uint8 Unsigned integer (0 to 255)
-uint16 Unsigned integer (0 to 65535)
-uint32 Unsigned integer (0 to 4294967295)
-uint64 Unsigned integer (0 to 18446744073709551615)
-float_ Shorthand for ``float64``.
-float16 Half precision float: sign bit, 5 bits exponent,
- 10 bits mantissa
-float32 Single precision float: sign bit, 8 bits exponent,
- 23 bits mantissa
-float64 Double precision float: sign bit, 11 bits exponent,
- 52 bits mantissa
-complex_ Shorthand for ``complex128``.
-complex64 Complex number, represented by two 32-bit floats (real
- and imaginary components)
-complex128 Complex number, represented by two 64-bit floats (real
- and imaginary components)
-========== ==========================================================
+============ ==========================================================
+Data type Description
+============ ==========================================================
+``bool_`` Boolean (True or False) stored as a byte
+``int_`` Default integer type (same as C ``long``; normally either
+ ``int64`` or ``int32``)
+intc Identical to C ``int`` (normally ``int32`` or ``int64``)
+intp Integer used for indexing (same as C ``ssize_t``; normally
+ either ``int32`` or ``int64``)
+int8 Byte (-128 to 127)
+int16 Integer (-32768 to 32767)
+int32 Integer (-2147483648 to 2147483647)
+int64 Integer (-9223372036854775808 to 9223372036854775807)
+uint8 Unsigned integer (0 to 255)
+uint16 Unsigned integer (0 to 65535)
+uint32 Unsigned integer (0 to 4294967295)
+uint64 Unsigned integer (0 to 18446744073709551615)
+``float_`` Shorthand for ``float64``.
+float16 Half precision float: sign bit, 5 bits exponent,
+ 10 bits mantissa
+float32 Single precision float: sign bit, 8 bits exponent,
+ 23 bits mantissa
+float64 Double precision float: sign bit, 11 bits exponent,
+ 52 bits mantissa
+``complex_`` Shorthand for ``complex128``.
+complex64 Complex number, represented by two 32-bit floats (real
+ and imaginary components)
+complex128 Complex number, represented by two 64-bit floats (real
+ and imaginary components)
+============ ==========================================================
Additionally to ``intc`` the platform dependent C integer types ``short``,
``long``, ``longlong`` and their unsigned versions are defined.
@@ -114,10 +114,10 @@ properties of the type, such as whether it is an integer::
>>> d
dtype('int32')
- >>> np.issubdtype(d, int)
+ >>> np.issubdtype(d, np.integer)
True
- >>> np.issubdtype(d, float)
+ >>> np.issubdtype(d, np.floating)
False
@@ -155,11 +155,11 @@ with 80-bit precision, and while most C compilers provide this as their
``long double`` identical to ``double`` (64 bits). NumPy makes the
compiler's ``long double`` available as ``np.longdouble`` (and
``np.clongdouble`` for the complex numbers). You can find out what your
-numpy provides with``np.finfo(np.longdouble)``.
+numpy provides with ``np.finfo(np.longdouble)``.
NumPy does not provide a dtype with more precision than C
-``long double``s; in particular, the 128-bit IEEE quad precision
-data type (FORTRAN's ``REAL*16``) is not available.
+``long double``\\s; in particular, the 128-bit IEEE quad precision
+data type (FORTRAN's ``REAL*16``\\) is not available.
For efficient memory alignment, ``np.longdouble`` is usually stored
padded with zero bits, either to 96 or 128 bits. Which is more efficient