diff options
author | Matti Picus <matti.picus@gmail.com> | 2020-09-02 21:01:35 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-09-02 13:01:35 -0500 |
commit | 1f8ce6341159ebb0731c2c262f4576609210d2c8 (patch) | |
tree | aa10443358243366d776ad669c0cbcd383ed3634 /numpy/doc/dispatch.py | |
parent | e3c84a44b68966ab887a3623a0ff57169e508deb (diff) | |
download | numpy-1f8ce6341159ebb0731c2c262f4576609210d2c8.tar.gz |
MAINT, DOC: move informational files from numpy.doc.*.py to their *.rst counterparts (#17222)
* DOC: redistribute docstring-only content from numpy/doc
* DOC: post-transition clean-up
* DOC, MAINT: reskip doctests, fix a few easy ones
Diffstat (limited to 'numpy/doc/dispatch.py')
-rw-r--r-- | numpy/doc/dispatch.py | 271 |
1 files changed, 0 insertions, 271 deletions
diff --git a/numpy/doc/dispatch.py b/numpy/doc/dispatch.py deleted file mode 100644 index af70ed836..000000000 --- a/numpy/doc/dispatch.py +++ /dev/null @@ -1,271 +0,0 @@ -""".. _dispatch_mechanism: - -Numpy's dispatch mechanism, introduced in numpy version v1.16 is the -recommended approach for writing custom N-dimensional array containers that are -compatible with the numpy API and provide custom implementations of numpy -functionality. Applications include `dask <http://dask.pydata.org>`_ arrays, an -N-dimensional array distributed across multiple nodes, and `cupy -<https://docs-cupy.chainer.org/en/stable/>`_ arrays, an N-dimensional array on -a GPU. - -To get a feel for writing custom array containers, we'll begin with a simple -example that has rather narrow utility but illustrates the concepts involved. - ->>> import numpy as np ->>> class DiagonalArray: -... def __init__(self, N, value): -... self._N = N -... self._i = value -... def __repr__(self): -... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" -... def __array__(self): -... return self._i * np.eye(self._N) -... - -Our custom array can be instantiated like: - ->>> arr = DiagonalArray(5, 1) ->>> arr -DiagonalArray(N=5, value=1) - -We can convert to a numpy array using :func:`numpy.array` or -:func:`numpy.asarray`, which will call its ``__array__`` method to obtain a -standard ``numpy.ndarray``. - ->>> np.asarray(arr) -array([[1., 0., 0., 0., 0.], - [0., 1., 0., 0., 0.], - [0., 0., 1., 0., 0.], - [0., 0., 0., 1., 0.], - [0., 0., 0., 0., 1.]]) - -If we operate on ``arr`` with a numpy function, numpy will again use the -``__array__`` interface to convert it to an array and then apply the function -in the usual way. - ->>> np.multiply(arr, 2) -array([[2., 0., 0., 0., 0.], - [0., 2., 0., 0., 0.], - [0., 0., 2., 0., 0.], - [0., 0., 0., 2., 0.], - [0., 0., 0., 0., 2.]]) - - -Notice that the return type is a standard ``numpy.ndarray``. - ->>> type(arr) -numpy.ndarray - -How can we pass our custom array type through this function? Numpy allows a -class to indicate that it would like to handle computations in a custom-defined -way through the interfaces ``__array_ufunc__`` and ``__array_function__``. Let's -take one at a time, starting with ``_array_ufunc__``. This method covers -:ref:`ufuncs`, a class of functions that includes, for example, -:func:`numpy.multiply` and :func:`numpy.sin`. - -The ``__array_ufunc__`` receives: - -- ``ufunc``, a function like ``numpy.multiply`` -- ``method``, a string, differentiating between ``numpy.multiply(...)`` and - variants like ``numpy.multiply.outer``, ``numpy.multiply.accumulate``, and so - on. For the common case, ``numpy.multiply(...)``, ``method == '__call__'``. -- ``inputs``, which could be a mixture of different types -- ``kwargs``, keyword arguments passed to the function - -For this example we will only handle the method ``__call__``. - ->>> from numbers import Number ->>> class DiagonalArray: -... def __init__(self, N, value): -... self._N = N -... self._i = value -... def __repr__(self): -... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" -... def __array__(self): -... return self._i * np.eye(self._N) -... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): -... if method == '__call__': -... N = None -... scalars = [] -... for input in inputs: -... if isinstance(input, Number): -... scalars.append(input) -... elif isinstance(input, self.__class__): -... scalars.append(input._i) -... if N is not None: -... if N != self._N: -... raise TypeError("inconsistent sizes") -... else: -... N = self._N -... else: -... return NotImplemented -... return self.__class__(N, ufunc(*scalars, **kwargs)) -... else: -... return NotImplemented -... - -Now our custom array type passes through numpy functions. - ->>> arr = DiagonalArray(5, 1) ->>> np.multiply(arr, 3) -DiagonalArray(N=5, value=3) ->>> np.add(arr, 3) -DiagonalArray(N=5, value=4) ->>> np.sin(arr) -DiagonalArray(N=5, value=0.8414709848078965) - -At this point ``arr + 3`` does not work. - ->>> arr + 3 -TypeError: unsupported operand type(s) for *: 'DiagonalArray' and 'int' - -To support it, we need to define the Python interfaces ``__add__``, ``__lt__``, -and so on to dispatch to the corresponding ufunc. We can achieve this -conveniently by inheriting from the mixin -:class:`~numpy.lib.mixins.NDArrayOperatorsMixin`. - ->>> import numpy.lib.mixins ->>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): -... def __init__(self, N, value): -... self._N = N -... self._i = value -... def __repr__(self): -... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" -... def __array__(self): -... return self._i * np.eye(self._N) -... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): -... if method == '__call__': -... N = None -... scalars = [] -... for input in inputs: -... if isinstance(input, Number): -... scalars.append(input) -... elif isinstance(input, self.__class__): -... scalars.append(input._i) -... if N is not None: -... if N != self._N: -... raise TypeError("inconsistent sizes") -... else: -... N = self._N -... else: -... return NotImplemented -... return self.__class__(N, ufunc(*scalars, **kwargs)) -... else: -... return NotImplemented -... - ->>> arr = DiagonalArray(5, 1) ->>> arr + 3 -DiagonalArray(N=5, value=4) ->>> arr > 0 -DiagonalArray(N=5, value=True) - -Now let's tackle ``__array_function__``. We'll create dict that maps numpy -functions to our custom variants. - ->>> HANDLED_FUNCTIONS = {} ->>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): -... def __init__(self, N, value): -... self._N = N -... self._i = value -... def __repr__(self): -... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" -... def __array__(self): -... return self._i * np.eye(self._N) -... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): -... if method == '__call__': -... N = None -... scalars = [] -... for input in inputs: -... # In this case we accept only scalar numbers or DiagonalArrays. -... if isinstance(input, Number): -... scalars.append(input) -... elif isinstance(input, self.__class__): -... scalars.append(input._i) -... if N is not None: -... if N != self._N: -... raise TypeError("inconsistent sizes") -... else: -... N = self._N -... else: -... return NotImplemented -... return self.__class__(N, ufunc(*scalars, **kwargs)) -... else: -... return NotImplemented -... def __array_function__(self, func, types, args, kwargs): -... if func not in HANDLED_FUNCTIONS: -... return NotImplemented -... # Note: this allows subclasses that don't override -... # __array_function__ to handle DiagonalArray objects. -... if not all(issubclass(t, self.__class__) for t in types): -... return NotImplemented -... return HANDLED_FUNCTIONS[func](*args, **kwargs) -... - -A convenient pattern is to define a decorator ``implements`` that can be used -to add functions to ``HANDLED_FUNCTIONS``. - ->>> def implements(np_function): -... "Register an __array_function__ implementation for DiagonalArray objects." -... def decorator(func): -... HANDLED_FUNCTIONS[np_function] = func -... return func -... return decorator -... - -Now we write implementations of numpy functions for ``DiagonalArray``. -For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that -calls ``numpy.sum(self)``, and the same for ``mean``. - ->>> @implements(np.sum) -... def sum(arr): -... "Implementation of np.sum for DiagonalArray objects" -... return arr._i * arr._N -... ->>> @implements(np.mean) -... def mean(arr): -... "Implementation of np.mean for DiagonalArray objects" -... return arr._i / arr._N -... ->>> arr = DiagonalArray(5, 1) ->>> np.sum(arr) -5 ->>> np.mean(arr) -0.2 - -If the user tries to use any numpy functions not included in -``HANDLED_FUNCTIONS``, a ``TypeError`` will be raised by numpy, indicating that -this operation is not supported. For example, concatenating two -``DiagonalArrays`` does not produce another diagonal array, so it is not -supported. - ->>> np.concatenate([arr, arr]) -TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [<class '__main__.DiagonalArray'>] - -Additionally, our implementations of ``sum`` and ``mean`` do not accept the -optional arguments that numpy's implementation does. - ->>> np.sum(arr, axis=0) -TypeError: sum() got an unexpected keyword argument 'axis' - -The user always has the option of converting to a normal ``numpy.ndarray`` with -:func:`numpy.asarray` and using standard numpy from there. - ->>> np.concatenate([np.asarray(arr), np.asarray(arr)]) -array([[1., 0., 0., 0., 0.], - [0., 1., 0., 0., 0.], - [0., 0., 1., 0., 0.], - [0., 0., 0., 1., 0.], - [0., 0., 0., 0., 1.], - [1., 0., 0., 0., 0.], - [0., 1., 0., 0., 0.], - [0., 0., 1., 0., 0.], - [0., 0., 0., 1., 0.], - [0., 0., 0., 0., 1.]]) - -Refer to the `dask source code <https://github.com/dask/dask>`_ and -`cupy source code <https://github.com/cupy/cupy>`_ for more fully-worked -examples of custom array containers. - -See also :doc:`NEP 18<neps:nep-0018-array-function-protocol>`. -""" |