diff options
author | Dan Allan <dallan@bnl.gov> | 2019-07-14 10:04:14 -0500 |
---|---|---|
committer | Dan Allan <dallan@bnl.gov> | 2019-07-14 10:04:14 -0500 |
commit | 3b27713a2c2d432a2ece6344417df93422d3f96c (patch) | |
tree | 8a9bb67a5b8df1849e8f322128f0d819cb8e9c1c /numpy/doc/dispatch.py | |
parent | 54911b6365bd4931055cc134dd10c9b0639d07dc (diff) | |
download | numpy-3b27713a2c2d432a2ece6344417df93422d3f96c.tar.gz |
Improve illustartion of unsupported args.
Diffstat (limited to 'numpy/doc/dispatch.py')
-rw-r--r-- | numpy/doc/dispatch.py | 16 |
1 files changed, 10 insertions, 6 deletions
diff --git a/numpy/doc/dispatch.py b/numpy/doc/dispatch.py index 313167005..09a3e5134 100644 --- a/numpy/doc/dispatch.py +++ b/numpy/doc/dispatch.py @@ -218,14 +218,12 @@ For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that calls ``numpy.sum(self)``, and the same for ``mean``. >>> @implements(np.sum) -... def sum(a, axis=None, out=None): +... def sum(a): ... "Implementation of np.sum for DiagonalArray objects" -... if axis is not None: -... raise TypeError("DiagonalArrays cannot be summed along one axis.") ... return arr._i * arr._N ... >>> @implements(np.mean) -... def sum(a, axis=None, out=None): +... def sum(a): ... "Implementation of np.mean for DiagonalArray objects" ... return arr._i / arr._N ... @@ -244,8 +242,14 @@ supported. >>> np.concatenate([arr, arr]) TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [<class '__main__.DiagonalArray'>] -The user always has the option of converting to a normal -``numpy.ndarray`` with :func:`numpy.asarray` and using standard numpy from there. +Additionally, our implementations of ``sum`` and ``mean`` do not accept the +optional arguments that numpy's implementation does. + +>>> np.sum(arr, axis=0) +TypeError: sum() got an unexpected keyword argument 'axis' + +The user always has the option of converting to a normal ``numpy.ndarray`` with +:func:`numpy.asarray` and using standard numpy from there. >>> np.concatenate([np.asarray(arr), np.asarray(arr)]) array([[1., 0., 0., 0., 0.], |