diff options
author | Dan Allan <dallan@bnl.gov> | 2019-07-13 17:42:37 -0500 |
---|---|---|
committer | Dan Allan <dallan@bnl.gov> | 2019-07-13 17:56:17 -0500 |
commit | 981103bf709df97ed0c916e45bc1fb0f8aa76666 (patch) | |
tree | 12ab98eb84d11671f074a3fd4e2f751a57be20ac /numpy/doc/dispatch.py | |
parent | 6533fc3c834c555f4df675ac3b21508e11d36e3e (diff) | |
download | numpy-981103bf709df97ed0c916e45bc1fb0f8aa76666.tar.gz |
Add new section of custom array containers.
Diffstat (limited to 'numpy/doc/dispatch.py')
-rw-r--r-- | numpy/doc/dispatch.py | 268 |
1 files changed, 268 insertions, 0 deletions
diff --git a/numpy/doc/dispatch.py b/numpy/doc/dispatch.py new file mode 100644 index 000000000..f592d4ffd --- /dev/null +++ b/numpy/doc/dispatch.py @@ -0,0 +1,268 @@ +""".. _dispatch_mechanism: + +Numpy's dispatch mechanism, introduced in numpy version v1.16 is the +recommended approach for writing custom N-dimensional array containers that are +compatible with the numpy API and provide custom implementations of numpy +functionality. Applications include `dask <http://dask.pydata.org>`_ arrays, an +N-dimensional array distributed across multiple nodes, and `cupy +<https://docs-cupy.chainer.org/en/stable/>`_ arrays, an N-dimensional array on +a GPU. + +To get a feel for writing custom array containers, we'll begin with a simple +example that has rather narrow utility but illustrates the concepts involved. + +>>> import numpy as np +>>> class DiagonalArray: +... def __init__(self, N, value): +... self._N = N +... self._i = value +... def __repr__(self): +... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" +... def __array__(self): +... return self._i * np.eye(self._N) +... + +Our custom array can be instantiated like: + +>>> arr = DiagonalArray(5, 1) +>>> arr +DiagonalArray(N=5, value=1) + +We can convert to a numpy array using :func:`numpy.array` or +:func:`numpy.asarray`, which will call its ``__array__`` method to obtain a +standard ``numpy.ndarray``. + +>>> np.asarray(arr) +array([[1., 0., 0., 0., 0.], + [0., 1., 0., 0., 0.], + [0., 0., 1., 0., 0.], + [0., 0., 0., 1., 0.], + [0., 0., 0., 0., 1.]]) + +If we operate on ``arr`` with a numpy function, numpy will again use the +``__array__`` interface to convert it to an array and then apply the function +in the usual way. + +>>> np.multiply(arr, 2) +array([[2., 0., 0., 0., 0.], + [0., 2., 0., 0., 0.], + [0., 0., 2., 0., 0.], + [0., 0., 0., 2., 0.], + [0., 0., 0., 0., 2.]]) + + +Notice that the return type is a standard ``numpy.ndarray``. + +>>> type(arr) +numpy.ndarray + +How can we pass our custom array type through this function? Numpy allows a +class to indicate that it would like to handle computations in a custom-defined +way through the interaces ``__array_ufunc__`` and ``__array_function__``. Let's +take one at a time, starting with ``_array_ufunc__``. This method covers +:ref:`ufuncs`, a class of functions that includes, for example, +:func:`numpy.multiply` and :func:`numpy.sin`. + +The ``__array_ufunc__`` receives: + +- ``ufunc``, a function like ``numpy.multiply`` +- ``method``, a string, differentiating between ``numpy.multiply(...)`` and + variants like ``numpy.multiply.outer``, ``numpy.multiply.accumulate``, and so + on. For the common case, ``numpy.multiply(...)``, ``method == '__call__'``. +- ``inputs``, which could be a mixture of different types +- ``kwargs``, keyword arguments passed to the function + +For this example we will only handle the method ``'__call__``. + +>>> from numbers import Number +>>> class DiagonalArray: +... def __init__(self, N, value): +... self._N = N +... self._i = value +... def __repr__(self): +... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" +... def __array__(self): +... return self._i * np.eye(self._N) +... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): +... if method == '__call__': +... N = None +... scalars = [] +... for input in inputs: +... if isinstance(input, Number): +... scalars.append(input) +... elif isinstance(input, self.__class__): +... scalars.append(input._i) +... if N is not None: +... if N != self._N: +... raise TypeError("inconsistent sizes") +... else: +... N = self._N +... else: +... return NotImplemented +... return self.__class__(N, ufunc(*scalars, **kwargs)) +... else: +... return NotImplemented +... + +Now our custom array type passes through numpy functions. + +>>> arr = DiagonalArray(5, 1) +>>> np.multiply(arr, 3) +DiagonalArray(N=5, value=3) +>>> np.add(arr, 3) +DiagonalArray(N=5, value=4) +>>> np.sin(arr) +DiagonalArray(N=5, value=0.8414709848078965) + +At this point ``arr + 3`` does not work. + +>>> arr + 3 +TypeError: unsupported operand type(s) for *: 'DiagonalArray' and 'int' + +To support it, we need to define the Python interfaces ``__add__``, ``__lt__``, +and so on to dispatch to the corresponding ufunc. We can achieve this +conveniently by inheriting from the mixin +:class:`~numpy.lib.mixins.NDArrayOperatorsMixin`. + +>>> import numpy.lib.mixins +>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): +... def __init__(self, N, value): +... self._N = N +... self._i = value +... def __repr__(self): +... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" +... def __array__(self): +... return self._i * np.eye(self._N) +... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): +... if method == '__call__': +... N = None +... scalars = [] +... for input in inputs: +... if isinstance(input, Number): +... scalars.append(input) +... elif isinstance(input, self.__class__): +... scalars.append(input._i) +... if N is not None: +... if N != self._N: +... raise TypeError("inconsistent sizes") +... else: +... N = self._N +... else: +... return NotImplemented +... return self.__class__(N, ufunc(*scalars, **kwargs)) +... else: +... return NotImplemented +... + +>>> arr = DiagonalArray(5, 1) +>>> arr + 3 +DiagonalArray(N=5, value=4) +>>> arr > 0 +DiagonalArray(N=5, value=True) + +Now let's tackle ``__array_function__``. We'll create dict that maps numpy +functions to our custom variants. + +>>> HANDLED_FUNCTIONS = {} +>>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): +... def __init__(self, N, value): +... self._N = N +... self._i = value +... def __repr__(self): +... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" +... def __array__(self): +... return self._i * np.eye(self._N) +... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): +... if method == '__call__': +... N = None +... scalars = [] +... for input in inputs: +... # In this case we accept only scalar numbers or DiagonalArrays. +... if isinstance(input, Number): +... scalars.append(input) +... elif isinstance(input, self.__class__): +... scalars.append(input._i) +... if N is not None: +... if N != self._N: +... raise TypeError("inconsistent sizes") +... else: +... N = self._N +... else: +... return NotImplemented +... return self.__class__(N, ufunc(*scalars, **kwargs)) +... else: +... return NotImplemented +... def __array_function__(self, func, types, args, kwargs): +... if func not in HANDLED_FUNCTIONS: +... return NotImplemented +... # Note: this allows subclasses that don't override +... # __array_function__ to handle DiagonalArray objects. +... if not all(issubclass(t, self.__class__) for t in types): +... return NotImplemented +... return HANDLED_FUNCTIONS[func](*args, **kwargs) +... + +A convenient pattern is to define a decorator ``implements`` that can be used +to add functions to ``HANDLED_FUNCTIONS``. + +>>> def implements(np_function): +... "Register an __array_function__ implementation for DiagonalArray objects." +... def decorator(func): +... HANDLED_FUNCTIONS[np_function] = func +... return func +... return decorator +... + +Now we write implementations of numpy functions for ``DiagonalArray``. + +>>> @implements(np.sum) +... def sum(a, axis=None, out=None): +... "Implementation of np.sum for DiagonalArray objects" +... if axis is not None: +... raise TypeError("DiagonalArrays cannot be summed along one axis.") +... return arr._i * arr._N +... +>>> @implements(np.mean) +... def sum(a, axis=None, out=None): +... "Implementation of np.mean for DiagonalArray objects" +... return arr._i / arr._N +... +>>> arr = DiagonalArray(5, 1) +>>> np.sum(arr) +5 +>>> np.mean(arr) +0.2 + +For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that +calls ``numpy.sum(self)``, and the same for ``mean``. + +If the user tries to use any numpy functions not included in +``HANDLED_FUNCTIONS``, a ``TypeError`` will be raised by numpy, indicating that +this operation is not supported. For example, concatenating two +``DiagonalArrays`` does not produce another diagonal array, so it is not +supported. + +>>> np.concatenate([arr, arr]) +TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [<class '__main__.DiagonalArray'>] + +The user always has the option of converting to a normal +``numpy.ndarray`` with :func:`numpy.asarray` and using standard numpy from there. + +>>> np.concatenate([np.asarray(arr), np.asarray(arr)]) +array([[1., 0., 0., 0., 0.], + [0., 1., 0., 0., 0.], + [0., 0., 1., 0., 0.], + [0., 0., 0., 1., 0.], + [0., 0., 0., 0., 1.], + [1., 0., 0., 0., 0.], + [0., 1., 0., 0., 0.], + [0., 0., 1., 0., 0.], + [0., 0., 0., 1., 0.], + [0., 0., 0., 0., 1.]]) + +Refer to the `dask source code <https://github.com/dask/dask>`_ and +`cupy source code <https://github.com/cupy/cupy>`_ for more fully-worked +examples of custom array containers. + +See also `NEP 18 <http://www.numpy.org/neps/nep-0018-array-function-protocol.html>`_. +""" |