summaryrefslogtreecommitdiff
path: root/numpy/doc/subclassing.py
diff options
context:
space:
mode:
authorAlessandro Pietro Bardelli <apbard@users.noreply.github.com>2017-01-04 00:58:44 +0100
committerAlessandro Pietro Bardelli <apbard@users.noreply.github.com>2017-02-22 10:50:53 +0100
commit9520de90837d0afaac3d1612047f4b952563b3d5 (patch)
tree623938c6d79bda2affa5e1794f8512155d2d4241 /numpy/doc/subclassing.py
parentf6a07571df745f01eaccf4b05b8476da6f0b5833 (diff)
downloadnumpy-9520de90837d0afaac3d1612047f4b952563b3d5.tar.gz
ENH: gradient support for unevenly spaced data
This somehow reverts #7618 and solves #6847, #7548 by implementing support for unevenly spaced data. Now the behaviour is similar to that of Matlab/Octave function. As argument it can take: 1. A single scalar to specify a sample distance for all dimensions. 2. N scalars to specify a constant sample distance for each dimension. i.e. `dx`, `dy`, `dz`, ... 3. N arrays to specify the coordinates of the values along each dimension of F. The length of the array must match the size of the corresponding dimension 4. Any combination of N scalars/arrays with the meaning of 2. and 3.
Diffstat (limited to 'numpy/doc/subclassing.py')
0 files changed, 0 insertions, 0 deletions