diff options
author | Paul Ivanov <paul.ivanov@local> | 2009-12-28 20:49:52 +0000 |
---|---|---|
committer | Paul Ivanov <paul.ivanov@local> | 2009-12-28 20:49:52 +0000 |
commit | e4f233ecfedd2aafa258db2d3ae27e30604cc020 (patch) | |
tree | 6d32fbdd19b8dca00cd7cafd8df076bac55ddfd8 /numpy/doc | |
parent | 5ba01996a9ab2fdfb7c120a5afae801f854a781a (diff) | |
download | numpy-e4f233ecfedd2aafa258db2d3ae27e30604cc020.tar.gz |
fixed a whole bunch of doctests
Diffstat (limited to 'numpy/doc')
-rw-r--r-- | numpy/doc/__init__.py | 2 | ||||
-rw-r--r-- | numpy/doc/basics.py | 5 | ||||
-rw-r--r-- | numpy/doc/constants.py | 16 | ||||
-rw-r--r-- | numpy/doc/glossary.py | 15 | ||||
-rw-r--r-- | numpy/doc/indexing.py | 18 | ||||
-rw-r--r-- | numpy/doc/misc.py | 5 | ||||
-rw-r--r-- | numpy/doc/structured_arrays.py | 3 | ||||
-rw-r--r-- | numpy/doc/ufuncs.py | 2 |
8 files changed, 39 insertions, 27 deletions
diff --git a/numpy/doc/__init__.py b/numpy/doc/__init__.py index 85c378182..6589b5492 100644 --- a/numpy/doc/__init__.py +++ b/numpy/doc/__init__.py @@ -20,7 +20,7 @@ The following topics are available: You can view them by ->>> help(np.doc.TOPIC) +>>> help(np.doc.TOPIC) #doctest: +SKIP """ % '\n- '.join([''] + __all__) diff --git a/numpy/doc/basics.py b/numpy/doc/basics.py index d34c1f303..5e7291957 100644 --- a/numpy/doc/basics.py +++ b/numpy/doc/basics.py @@ -67,6 +67,7 @@ functions or methods accept. Some examples:: >>> y array([1, 2, 4]) >>> z = np.arange(3, dtype=np.uint8) + >>> z array([0, 1, 2], dtype=uint8) Array types can also be referred to by character codes, mostly to retain @@ -81,8 +82,8 @@ We recommend using dtype objects instead. To convert the type of an array, use the .astype() method (preferred) or the type itself as a function. For example: :: - >>> z.astype(float) - array([0., 1., 2.]) + >>> z.astype(float) #doctest: +NORMALIZE_WHITESPACE + array([ 0., 1., 2.]) >>> np.int8(z) array([0, 1, 2], dtype=int8) diff --git a/numpy/doc/constants.py b/numpy/doc/constants.py index a4487b72a..adb7c7e02 100644 --- a/numpy/doc/constants.py +++ b/numpy/doc/constants.py @@ -322,20 +322,20 @@ add_newdoc('numpy', 'newaxis', Examples -------- - >>> newaxis is None + >>> np.newaxis is None True >>> x = np.arange(3) >>> x array([0, 1, 2]) - >>> x[:, newaxis] + >>> x[:, np.newaxis] array([[0], [1], [2]]) - >>> x[:, newaxis, newaxis] + >>> x[:, np.newaxis, np.newaxis] array([[[0]], [[1]], [[2]]]) - >>> x[:, newaxis] * x + >>> x[:, np.newaxis] * x array([[0, 0, 0], [0, 1, 2], [0, 2, 4]]) @@ -343,20 +343,20 @@ add_newdoc('numpy', 'newaxis', Outer product, same as ``outer(x, y)``: >>> y = np.arange(3, 6) - >>> x[:, newaxis] * y + >>> x[:, np.newaxis] * y array([[ 0, 0, 0], [ 3, 4, 5], [ 6, 8, 10]]) ``x[newaxis, :]`` is equivalent to ``x[newaxis]`` and ``x[None]``: - >>> x[newaxis, :].shape + >>> x[np.newaxis, :].shape (1, 3) - >>> x[newaxis].shape + >>> x[np.newaxis].shape (1, 3) >>> x[None].shape (1, 3) - >>> x[:, newaxis].shape + >>> x[:, np.newaxis].shape (3, 1) """) diff --git a/numpy/doc/glossary.py b/numpy/doc/glossary.py index f591a5424..dc7c75a0a 100644 --- a/numpy/doc/glossary.py +++ b/numpy/doc/glossary.py @@ -181,7 +181,7 @@ iterable [1, 4, 9] It is often used in combintion with ``enumerate``:: - + >>> keys = ['a','b','c'] >>> for n, k in enumerate(keys): ... print "Key %d: %s" % (n, k) ... @@ -242,13 +242,16 @@ masked array >>> x = np.ma.masked_array([np.nan, 2, np.nan], [True, False, True]) >>> x masked_array(data = [-- 2.0 --], - mask = [ True False True], - fill_value=1e+20) + mask = [ True False True], + fill_value = 1e+20) + <BLANKLINE> >>> x + [1, 2, 3] masked_array(data = [-- 4.0 --], - mask = [ True False True], - fill_value=1e+20) + mask = [ True False True], + fill_value = 1e+20) + <BLANKLINE> + Masked arrays are often used when operating on arrays containing missing or invalid entries. @@ -366,7 +369,7 @@ tuple This is often used when a function returns multiple values: >>> def return_many(): - ... return 1, 'alpha' + ... return 1, 'alpha', None >>> a, b, c = return_many() >>> a, b, c diff --git a/numpy/doc/indexing.py b/numpy/doc/indexing.py index 365edd67a..282f35288 100644 --- a/numpy/doc/indexing.py +++ b/numpy/doc/indexing.py @@ -88,7 +88,7 @@ examples illustrates best: :: >>> x[:-7] array([0, 1, 2]) >>> x[1:7:2] - array([1,3,5]) + array([1, 3, 5]) >>> y = np.arange(35).reshape(5,7) >>> y[1:5:2,::3] array([[ 7, 10, 13], @@ -294,6 +294,9 @@ remaining unspecified dimensions. For example: :: This is equivalent to: :: >>> z[1,:,:,2] + array([[29, 32, 35], + [38, 41, 44], + [47, 50, 53]]) Assigning values to indexed arrays ================================== @@ -304,6 +307,7 @@ assigned to the indexed array must be shape consistent (the same shape or broadcastable to the shape the index produces). For example, it is permitted to assign a constant to a slice: :: + >>> x = np.arange(10) >>> x[2:7] = 1 or an array of the right size: :: @@ -327,7 +331,7 @@ assignments are always made to the original data in the array actions may not work as one may naively expect. This particular example is often surprising to people: :: - >>> x[np.array([1, 1, 3, 1]) += 1 + >>> x[np.array([1, 1, 3, 1])] += 1 Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The reason is because @@ -360,6 +364,7 @@ Slices can be specified within programs by using the slice() function in Python. For example: :: >>> indices = (1,1,1,slice(0,2)) # same as [1,1,1,0:2] + >>> z[indices] array([39, 40]) Likewise, ellipsis can be specified by code by using the Ellipsis object: :: @@ -376,9 +381,10 @@ function directly as an index since it always returns a tuple of index arrays. Because the special treatment of tuples, they are not automatically converted to an array as a list would be. As an example: :: - >>> z[[1,1,1,1]] - ... # produces a large array - >>> z[(1,1,1,1)] - 40 # returns a single value + >>> z[[1,1,1,1]] # produces a large array + array([[[[27, 28, 29], + [30, 31, 32], ... + >>> z[(1,1,1,1)] # returns a single value + 40 """ diff --git a/numpy/doc/misc.py b/numpy/doc/misc.py index eb2dc4395..8575a8e4f 100644 --- a/numpy/doc/misc.py +++ b/numpy/doc/misc.py @@ -13,12 +13,12 @@ original value was) Note: cannot use equality to test NaNs. E.g.: :: + >>> myarr = np.array([1., 0., np.nan, 3.]) >>> np.where(myarr == np.nan) >>> nan == nan # is always False! Use special numpy functions instead. >>> np.nan == np.nan False - >>> myarr = np.array([1., 0., np.nan, 3.]) >>> myarr[myarr == np.nan] = 0. # doesn't work >>> myarr array([ 1., 0., NaN, 3.]) @@ -68,7 +68,7 @@ These behaviors can be set for all kinds of errors or specific ones: :: underflow: floating point underflows Note that integer divide-by-zero is handled by the same machinery. -These behaviors are set on a per-thead basis. +These behaviors are set on a per-thread basis. Examples: ------------ @@ -86,6 +86,7 @@ Examples: >>> def errorhandler(errstr, errflag): ... print "saw stupid error!" >>> np.seterrcall(errorhandler) +<function err_handler at 0x...> >>> j = np.seterr(all='call') >>> np.zeros(5, dtype=np.int32)/0 FloatingPointError: invalid value encountered in divide diff --git a/numpy/doc/structured_arrays.py b/numpy/doc/structured_arrays.py index 59af4eb57..21fdf87ea 100644 --- a/numpy/doc/structured_arrays.py +++ b/numpy/doc/structured_arrays.py @@ -105,7 +105,7 @@ dtype definition (using any of the variants being described here). As an example (using a definition using a list, so see 3) for further details): :: - >>> x = zeros(3, dtype=('i4',[('r','u1'), ('g','u1'), ('b','u1'), ('a','u1')])) + >>> x = np.zeros(3, dtype=('i4',[('r','u1'), ('g','u1'), ('b','u1'), ('a','u1')])) >>> x array([0, 0, 0]) >>> x['r'] @@ -145,6 +145,7 @@ The other dictionary form permitted is a dictionary of name keys with tuple values specifying type, offset, and an optional title. >>> x = np.zeros(3, dtype={'col1':('i1',0,'title 1'), 'col2':('f4',1,'title 2')}) + >>> x array([(0, 0.0), (0, 0.0), (0, 0.0)], dtype=[(('title 1', 'col1'), '|i1'), (('title 2', 'col2'), '>f4')]) diff --git a/numpy/doc/ufuncs.py b/numpy/doc/ufuncs.py index 4819e5268..d6a1cd62a 100644 --- a/numpy/doc/ufuncs.py +++ b/numpy/doc/ufuncs.py @@ -82,7 +82,7 @@ array. A couple examples: :: >>> np.add.accumulate(np.arange(10)) array([ 0, 1, 3, 6, 10, 15, 21, 28, 36, 45]) - >>> np.multiply.accumulate(np.arange(1,9)) + >>> np.multiply.accumulate(np.arange(1,9)) array([ 1, 2, 6, 24, 120, 720, 5040, 40320]) The behavior for multidimensional arrays is the same as for .reduce(), as is the use of the axis keyword). |