summaryrefslogtreecommitdiff
path: root/numpy/lib/arraypad.py
diff options
context:
space:
mode:
authorLars Grueter <lagru@users.noreply.github.com>2019-03-25 10:23:46 +0100
committerSebastian Berg <sebastian@sipsolutions.net>2019-03-25 10:23:46 +0100
commit81f0ddac64919e503beeea2c1812b36a607de55d (patch)
treeafbd7403a56cd609bce7efdd16dd12a9f9454800 /numpy/lib/arraypad.py
parent6c75254b952a557ee7535d1e1ec947b38f536733 (diff)
downloadnumpy-81f0ddac64919e503beeea2c1812b36a607de55d.tar.gz
MAINT: Rewrite numpy.pad without concatenate (gh-11358)
* ENH: Add support for constant, edge, linear_ramp to new numpy.pad Passes unit tests: - TestConstant - TestEdge - TestZeroPadWidth - TestLegacyVectorFunction - TestNdarrayPadWidth - TestUnicodeInput - TestLinearRamp * MAINT: Simplify diff / change order of functions * MAINT: Revert to old handling of keyword-only arguments * ENH: Add support for stat modes * ENH: Add support for "reflect" mode * MAINT: Remove _slice_column * ENH: Add support for "symmetric" mode * MAINT: Simplify mode "linear_ramp" Creating the linear ramp as an array with 1-sized dimensions except for the one given by `axis` allows implicit broadcasting to the needed shape. This seems to be even a little bit faster that doing this by hand and allows the simplicifaction of the algorithm. Note: Profiling and optimization will be done again at a later stage. * MAINT: Reorder arguments of a sum and fix typo Addresses feedback raised in PR. * ENH: Add support for "wrap" mode This completes the first draft of the complete rewrite meaning all unit tests should pass from this commit onwards. * MAINT: Merge functions for "reflect" and "symmetric" mode The set functions were nearly the same, apart from some index offsets. Merging them reduces code duplication. * TST: Add regression test for gh-11216 The rewrite in past commits fixed this bug. * BUG: Fix edge case for _set_wrap_both when pad_amt contains 0. And include test to protect against regression. * MAINT: Simplify and optimize pad modes Major changes & goals: Don't deal with pad area in the front and back separately. This modularity isn't needed and makes handling of the right edge more awkward. All modes now deal with the left and right side at the same time. Move the creation of the linear ramps fully to its own function which behaves like a vectorized version of linspace. Separate calculation and application of the pad area where possible. This means that _get_edges can be reused for _get_linear_ramps. Combine _normalize_shape and _validate_lengths in a single function which should handles common cases faster. Add new mode "empty" which leaves the padded areas undefined. Add documentation where it was missing. * TST: Don't use np.empty in unit tests * MAINT: Reorder workflow in numpy.pad and deal with empty dimensions Only modes "constant" and "empty" can extend dimensions of size 0. Deal with this edge case gracefully for all other modes either fail or return empty array with padded non-zero dimensions. Handle default values closer to their actual usage. And validate keyword arguments that must be numbers. * MAINT: Add small tweaks to control flow and documentation * BUG: Ensure wrap mode works if right_pad is 0 * ENH: Use reduced region of interest for iterative padding When padding multiple dimensions iteratively corner values are unnecessarily overwritten multiple times. This function reduces the working area for the first dimensions so that corners are excluded. * MAINT: Restore original argument order in _slice_at_axis * MAINT: Keep original error message of broadcast_to * MAINT: Restore old behavior for non-number end_values. * BENCH: Make the pad benchmark pagefault in setup * ENH/TST: Preserve memory layout (order) of the input array and add appropriate unit test. * STY: Revert cosmetical changes to reduce diff * MAINT: Pin dtype to float64 for np.pad's benchmarks * MAINT: Remove redundant code path in _view_roi * MAINT/TST: Provide proper error message for unsupported modes and add appropriate unit test. * STY: Keep docstrings consistent and fix typo. * MAINT: Simplify logical workflow in pad * MAINT: Remove dtype argument from _linear_ramp The responsibility of rounding (but without type conversion) is not really need in _linear_ramp and only makes it a little bit harder to reason about. * DOC: Add version tag to new argument "empty" * MAINT: Default to C-order for padded arrays unless the input is F-contiguous. * MAINT: Name slice of original area consistently for all arguments describing the same thing. * STY: Reduce vertical space * MAINT: Remove shape argument from _slice_at_axis Simplifies calls to this function and the function itself. Using `(...,)` instead should keep this unambiguous. This change is not compatible with Python 2.7 which doesn't support this syntax outside sequence slicing. If that is wanted one could use `(Ellipsis,)` instead. * TST: Test if end_values of linear_ramp are exact which was not given in the old implementation `_arange_ndarray`. * DOC: Improve comments and wrap long line * MAINT: Refactor index_pair to width_pair Calling the right value an index is just plain wrong as it can't be used as such. * MAINT: Make _linear_ramp compatible with size=0 * MAINT: Don't rely on negative indices for slicing Calculating the proper positive index of the start of the right pad area makes it possible to omit the extra code paths for a width of 0. This should make the code easier to reason about. * MAINT: Skip calculation of right_stat if identical If the input area for both sides is the same we don't need to calculate it twice. * TST: Adapt tests from gh-12789 to rewrite of pad * TST: Add tests for mode "empty" * TST: Test dtype persistence for all modes * TST: Test exception for unsupported modes * TST: Test repeated wrapping for each side individually. Reaches some only partially covered if-statments in _set_wrap_both. * TST: Test padding of empty dimension with constant * TST: Test if end_values of linear_ramp are exact which was not given in the old implementation `_arange_ndarray`. (Was accidentally overwritten during the last merge). * TST: Test persistence of memory layout Adapted from an older commit 3ac4d2a1b9b258d65f8d2b5f8f25f88e3a0e8f58 which was accidentally overwritten during the last merge. * MAINT: Simplify branching in _set_reflect_both Reduce branching and try to make the calculation of the various indices easier to understand. * TST: Parametrize TestConditionalShortcuts class * TST: Test empty dimension padding for all modes * TST: Keep test parametrization ordered Keep parametrization ordered, otherwise pytest-xdist might believe that different tests were collected during parallelization causing test failures. * DOC: Describe performance improvement of np.pad as well as the new mode "empty" in release notes (see gh-11358). * DOC: Remove outdated / misleading notes These notes are badly worded or actually misleading. For a better explanation on how these functions work have a look at the context and comments just above the lines calling these functions.
Diffstat (limited to 'numpy/lib/arraypad.py')
-rw-r--r--numpy/lib/arraypad.py1394
1 files changed, 477 insertions, 917 deletions
diff --git a/numpy/lib/arraypad.py b/numpy/lib/arraypad.py
index 66f21bfca..570f86969 100644
--- a/numpy/lib/arraypad.py
+++ b/numpy/lib/arraypad.py
@@ -16,50 +16,67 @@ __all__ = ['pad']
# Private utility functions.
-def _arange_ndarray(arr, shape, axis, reverse=False):
+def _linear_ramp(ndim, axis, start, stop, size, reverse=False):
"""
- Create an ndarray of `shape` with increments along specified `axis`
+ Create a linear ramp of `size` in `axis` with `ndim`.
+
+ This algorithm behaves like a vectorized version of `numpy.linspace`.
+ The resulting linear ramp is broadcastable to any array that matches the
+ ramp in `shape[axis]` and `ndim`.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- shape : tuple of ints
- Shape of desired array. Should be equivalent to `arr.shape` except
- `shape[axis]` which may have any positive value.
+ ndim : int
+ Number of dimensions of the resulting array. All dimensions except
+ the one specified by `axis` will have the size 1.
axis : int
- Axis to increment along.
+ The dimension that contains the linear ramp of `size`.
+ start : int or ndarray
+ The starting value(s) of the linear ramp. If given as an array, its
+ size must match `size`.
+ stop : int or ndarray
+ The stop value(s) (not included!) of the linear ramp. If given as an
+ array, its size must match `size`.
+ size : int
+ The number of elements in the linear ramp. If this argument is 0 the
+ dimensions of `ramp` will all be of length 1 except for the one given
+ by `axis` which will be 0.
reverse : bool
- If False, increment in a positive fashion from 1 to `shape[axis]`,
- inclusive. If True, the bounds are the same but the order reversed.
+ If False, increment in a positive fashion, otherwise decrement.
Returns
-------
- padarr : ndarray
- Output array sized to pad `arr` along `axis`, with linear range from
- 1 to `shape[axis]` along specified `axis`.
-
- Notes
- -----
- The range is deliberately 1-indexed for this specific use case. Think of
- this algorithm as broadcasting `np.arange` to a single `axis` of an
- arbitrarily shaped ndarray.
+ ramp : ndarray
+ Output array of dtype np.float64 that in- or decrements along the given
+ `axis`.
+ Examples
+ --------
+ >>> _linear_ramp(ndim=2, axis=0, start=np.arange(3), stop=10, size=2)
+ array([[0. , 1. , 2. ],
+ [5. , 5.5, 6. ]])
+ >>> _linear_ramp(ndim=3, axis=0, start=2, stop=0, size=0)
+ array([], shape=(0, 1, 1), dtype=float64)
"""
- initshape = tuple(1 if i != axis else shape[axis]
- for (i, x) in enumerate(arr.shape))
- if not reverse:
- padarr = np.arange(1, shape[axis] + 1)
- else:
- padarr = np.arange(shape[axis], 0, -1)
- padarr = padarr.reshape(initshape)
- for i, dim in enumerate(shape):
- if padarr.shape[i] != dim:
- padarr = padarr.repeat(dim, axis=i)
- return padarr
+ # Create initial ramp
+ ramp = np.arange(size, dtype=np.float64)
+ if reverse:
+ ramp = ramp[::-1]
+
+ # Make sure, that ramp is broadcastable
+ init_shape = (1,) * axis + (size,) + (1,) * (ndim - axis - 1)
+ ramp = ramp.reshape(init_shape)
+
+ if size != 0:
+ # And scale to given start and stop values
+ gain = (stop - start) / float(size)
+ ramp = ramp * gain
+ ramp += start
+ return ramp
-def _round_ifneeded(arr, dtype):
+
+def _round_if_needed(arr, dtype):
"""
Rounds arr inplace if destination dtype is integer.
@@ -69,821 +86,418 @@ def _round_ifneeded(arr, dtype):
Input array.
dtype : dtype
The dtype of the destination array.
-
"""
if np.issubdtype(dtype, np.integer):
arr.round(out=arr)
-def _slice_at_axis(shape, sl, axis):
- """
- Construct a slice tuple the length of shape, with sl at the specified axis
- """
- slice_tup = (slice(None),)
- return slice_tup * axis + (sl,) + slice_tup * (len(shape) - axis - 1)
-
-
-def _slice_first(shape, n, axis):
- """ Construct a slice tuple to take the first n elements along axis """
- return _slice_at_axis(shape, slice(0, n), axis=axis)
-
-
-def _slice_last(shape, n, axis):
- """ Construct a slice tuple to take the last n elements along axis """
- dim = shape[axis] # doing this explicitly makes n=0 work
- return _slice_at_axis(shape, slice(dim - n, dim), axis=axis)
-
-
-def _do_prepend(arr, pad_chunk, axis):
- return np.concatenate(
- (pad_chunk.astype(arr.dtype, copy=False), arr), axis=axis)
-
-
-def _do_append(arr, pad_chunk, axis):
- return np.concatenate(
- (arr, pad_chunk.astype(arr.dtype, copy=False)), axis=axis)
-
-
-def _prepend_const(arr, pad_amt, val, axis=-1):
+def _slice_at_axis(sl, axis):
"""
- Prepend constant `val` along `axis` of `arr`.
+ Construct tuple of slices to slice an array in the given dimension.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to prepend.
- val : scalar
- Constant value to use. For best results should be of type `arr.dtype`;
- if not `arr.dtype` will be cast to `arr.dtype`.
+ sl : slice
+ The slice for the given dimension.
axis : int
- Axis along which to pad `arr`.
+ The axis to which `sl` is applied. All other dimensions are left
+ "unsliced".
Returns
-------
- padarr : ndarray
- Output array, with `pad_amt` constant `val` prepended along `axis`.
+ sl : tuple of slices
+ A tuple with slices matching `shape` in length.
+ Examples
+ --------
+ >>> _slice_at_axis(slice(None, 3, -1), 1)
+ (slice(None, None, None), slice(None, 3, -1), (...,))
"""
- if pad_amt == 0:
- return arr
- padshape = tuple(x if i != axis else pad_amt
- for (i, x) in enumerate(arr.shape))
- return _do_prepend(arr, np.full(padshape, val, dtype=arr.dtype), axis)
+ return (slice(None),) * axis + (sl,) + (...,)
-def _append_const(arr, pad_amt, val, axis=-1):
+def _view_roi(array, original_area_slice, axis):
"""
- Append constant `val` along `axis` of `arr`.
+ Get a view of the current region of interest during iterative padding.
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to append.
- val : scalar
- Constant value to use. For best results should be of type `arr.dtype`;
- if not `arr.dtype` will be cast to `arr.dtype`.
- axis : int
- Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` constant `val` appended along `axis`.
-
- """
- if pad_amt == 0:
- return arr
- padshape = tuple(x if i != axis else pad_amt
- for (i, x) in enumerate(arr.shape))
- return _do_append(arr, np.full(padshape, val, dtype=arr.dtype), axis)
-
-
-
-def _prepend_edge(arr, pad_amt, axis=-1):
- """
- Prepend `pad_amt` to `arr` along `axis` by extending edge values.
+ When padding multiple dimensions iteratively corner values are
+ unnecessarily overwritten multiple times. This function reduces the
+ working area for the first dimensions so that corners are excluded.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to prepend.
+ array : ndarray
+ The array with the region of interest.
+ original_area_slice : tuple of slices
+ Denotes the area with original values of the unpadded array.
axis : int
- Axis along which to pad `arr`.
+ The currently padded dimension assuming that `axis` is padded before
+ `axis` + 1.
Returns
-------
- padarr : ndarray
- Output array, extended by `pad_amt` edge values appended along `axis`.
-
+ roi : ndarray
+ The region of interest of the original `array`.
"""
- if pad_amt == 0:
- return arr
+ axis += 1
+ sl = (slice(None),) * axis + original_area_slice[axis:]
+ return array[sl]
- edge_slice = _slice_first(arr.shape, 1, axis=axis)
- edge_arr = arr[edge_slice]
- return _do_prepend(arr, edge_arr.repeat(pad_amt, axis=axis), axis)
-
-def _append_edge(arr, pad_amt, axis=-1):
+def _pad_simple(array, pad_width, fill_value=None):
"""
- Append `pad_amt` to `arr` along `axis` by extending edge values.
+ Pad array on all sides with either a single value or undefined values.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to append.
- axis : int
- Axis along which to pad `arr`.
+ array : ndarray
+ Array to grow.
+ pad_width : sequence of tuple[int, int]
+ Pad width on both sides for each dimension in `arr`.
+ fill_value : scalar, optional
+ If provided the padded area is filled with this value, otherwise
+ the pad area left undefined.
Returns
-------
- padarr : ndarray
- Output array, extended by `pad_amt` edge values prepended along
- `axis`.
-
+ padded : ndarray
+ The padded array with the same dtype as`array`. Its order will default
+ to C-style if `array` is not F-contiguous.
+ original_area_slice : tuple
+ A tuple of slices pointing to the area of the original array.
"""
- if pad_amt == 0:
- return arr
-
- edge_slice = _slice_last(arr.shape, 1, axis=axis)
- edge_arr = arr[edge_slice]
- return _do_append(arr, edge_arr.repeat(pad_amt, axis=axis), axis)
+ # Allocate grown array
+ new_shape = tuple(
+ left + size + right
+ for size, (left, right) in zip(array.shape, pad_width)
+ )
+ order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order
+ padded = np.empty(new_shape, dtype=array.dtype, order=order)
+ if fill_value is not None:
+ padded.fill(fill_value)
-def _prepend_ramp(arr, pad_amt, end, axis=-1):
- """
- Prepend linear ramp along `axis`.
+ # Copy old array into correct space
+ original_area_slice = tuple(
+ slice(left, left + size)
+ for size, (left, right) in zip(array.shape, pad_width)
+ )
+ padded[original_area_slice] = array
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to prepend.
- end : scalar
- Constal value to use. For best results should be of type `arr.dtype`;
- if not `arr.dtype` will be cast to `arr.dtype`.
- axis : int
- Axis along which to pad `arr`.
+ return padded, original_area_slice
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` values prepended along `axis`. The
- prepended region ramps linearly from the edge value to `end`.
+def _set_pad_area(padded, axis, width_pair, value_pair):
"""
- if pad_amt == 0:
- return arr
-
- # Generate shape for final concatenated array
- padshape = tuple(x if i != axis else pad_amt
- for (i, x) in enumerate(arr.shape))
-
- # Generate an n-dimensional array incrementing along `axis`
- ramp_arr = _arange_ndarray(arr, padshape, axis,
- reverse=True).astype(np.float64)
-
- # Appropriate slicing to extract n-dimensional edge along `axis`
- edge_slice = _slice_first(arr.shape, 1, axis=axis)
-
- # Extract edge, and extend along `axis`
- edge_pad = arr[edge_slice].repeat(pad_amt, axis)
-
- # Linear ramp
- slope = (end - edge_pad) / float(pad_amt)
- ramp_arr = ramp_arr * slope
- ramp_arr += edge_pad
- _round_ifneeded(ramp_arr, arr.dtype)
-
- # Ramp values will most likely be float, cast them to the same type as arr
- return _do_prepend(arr, ramp_arr, axis)
-
-
-def _append_ramp(arr, pad_amt, end, axis=-1):
- """
- Append linear ramp along `axis`.
+ Set empty-padded area in given dimension.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to append.
- end : scalar
- Constal value to use. For best results should be of type `arr.dtype`;
- if not `arr.dtype` will be cast to `arr.dtype`.
+ padded : ndarray
+ Array with the pad area which is modified inplace.
axis : int
- Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` values appended along `axis`. The
- appended region ramps linearly from the edge value to `end`.
-
+ Dimension with the pad area to set.
+ width_pair : (int, int)
+ Pair of widths that mark the pad area on both sides in the given
+ dimension.
+ value_pair : tuple of scalars or ndarrays
+ Values inserted into the pad area on each side. It must match or be
+ broadcastable to the shape of `arr`.
"""
- if pad_amt == 0:
- return arr
-
- # Generate shape for final concatenated array
- padshape = tuple(x if i != axis else pad_amt
- for (i, x) in enumerate(arr.shape))
+ left_slice = _slice_at_axis(slice(None, width_pair[0]), axis)
+ padded[left_slice] = value_pair[0]
- # Generate an n-dimensional array incrementing along `axis`
- ramp_arr = _arange_ndarray(arr, padshape, axis,
- reverse=False).astype(np.float64)
+ right_slice = _slice_at_axis(
+ slice(padded.shape[axis] - width_pair[1], None), axis)
+ padded[right_slice] = value_pair[1]
- # Slice a chunk from the edge to calculate stats on
- edge_slice = _slice_last(arr.shape, 1, axis=axis)
- # Extract edge, and extend along `axis`
- edge_pad = arr[edge_slice].repeat(pad_amt, axis)
-
- # Linear ramp
- slope = (end - edge_pad) / float(pad_amt)
- ramp_arr = ramp_arr * slope
- ramp_arr += edge_pad
- _round_ifneeded(ramp_arr, arr.dtype)
-
- # Ramp values will most likely be float, cast them to the same type as arr
- return _do_append(arr, ramp_arr, axis)
-
-
-def _prepend_max(arr, pad_amt, num, axis=-1):
+def _get_edges(padded, axis, width_pair):
"""
- Prepend `pad_amt` maximum values along `axis`.
+ Retrieve edge values from empty-padded array in given dimension.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to prepend.
- num : int
- Depth into `arr` along `axis` to calculate maximum.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
- axis : int
- Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` values appended along `axis`. The
- prepended region is the maximum of the first `num` values along
- `axis`.
-
- """
- if pad_amt == 0:
- return arr
-
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _prepend_edge(arr, pad_amt, axis)
-
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
-
- # Slice a chunk from the edge to calculate stats on
- max_slice = _slice_first(arr.shape, num, axis=axis)
-
- # Extract slice, calculate max
- max_chunk = arr[max_slice].max(axis=axis, keepdims=True)
-
- # Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt`
- return _do_prepend(arr, max_chunk.repeat(pad_amt, axis=axis), axis)
-
-
-def _append_max(arr, pad_amt, num, axis=-1):
- """
- Pad one `axis` of `arr` with the maximum of the last `num` elements.
-
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to append.
- num : int
- Depth into `arr` along `axis` to calculate maximum.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
+ padded : ndarray
+ Empty-padded array.
axis : int
- Axis along which to pad `arr`.
+ Dimension in which the edges are considered.
+ width_pair : (int, int)
+ Pair of widths that mark the pad area on both sides in the given
+ dimension.
Returns
-------
- padarr : ndarray
- Output array, with `pad_amt` values appended along `axis`. The
- appended region is the maximum of the final `num` values along `axis`.
-
+ left_edge, right_edge : ndarray
+ Edge values of the valid area in `padded` in the given dimension. Its
+ shape will always match `padded` except for the dimension given by
+ `axis` which will have a length of 1.
"""
- if pad_amt == 0:
- return arr
-
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _append_edge(arr, pad_amt, axis)
-
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
-
- # Slice a chunk from the edge to calculate stats on
- if num is not None:
- max_slice = _slice_last(arr.shape, num, axis=axis)
- else:
- max_slice = tuple(slice(None) for x in arr.shape)
+ left_index = width_pair[0]
+ left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis)
+ left_edge = padded[left_slice]
- # Extract slice, calculate max
- max_chunk = arr[max_slice].max(axis=axis, keepdims=True)
+ right_index = padded.shape[axis] - width_pair[1]
+ right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis)
+ right_edge = padded[right_slice]
- # Concatenate `arr` with `max_chunk`, extended along `axis` by `pad_amt`
- return _do_append(arr, max_chunk.repeat(pad_amt, axis=axis), axis)
+ return left_edge, right_edge
-def _prepend_mean(arr, pad_amt, num, axis=-1):
+def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
"""
- Prepend `pad_amt` mean values along `axis`.
+ Construct linear ramps for empty-padded array in given dimension.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to prepend.
- num : int
- Depth into `arr` along `axis` to calculate mean.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
+ padded : ndarray
+ Empty-padded array.
axis : int
- Axis along which to pad `arr`.
+ Dimension in which the ramps are constructed.
+ width_pair : (int, int)
+ Pair of widths that mark the pad area on both sides in the given
+ dimension.
+ end_value_pair : (scalar, scalar)
+ End values for the linear ramps which form the edge of the fully padded
+ array. These values are included in the linear ramps.
Returns
-------
- padarr : ndarray
- Output array, with `pad_amt` values prepended along `axis`. The
- prepended region is the mean of the first `num` values along `axis`.
-
+ left_ramp, right_ramp : ndarray
+ Linear ramps to set on both sides of `padded`.
"""
- if pad_amt == 0:
- return arr
+ edge_pair = _get_edges(padded, axis, width_pair)
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _prepend_edge(arr, pad_amt, axis)
+ left_ramp = _linear_ramp(
+ padded.ndim, axis, start=end_value_pair[0], stop=edge_pair[0],
+ size=width_pair[0], reverse=False
+ )
+ _round_if_needed(left_ramp, padded.dtype)
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
+ right_ramp = _linear_ramp(
+ padded.ndim, axis, start=end_value_pair[1], stop=edge_pair[1],
+ size=width_pair[1], reverse=True
+ )
+ _round_if_needed(right_ramp, padded.dtype)
- # Slice a chunk from the edge to calculate stats on
- mean_slice = _slice_first(arr.shape, num, axis=axis)
+ return left_ramp, right_ramp
- # Extract slice, calculate mean
- mean_chunk = arr[mean_slice].mean(axis, keepdims=True)
- _round_ifneeded(mean_chunk, arr.dtype)
- # Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt`
- return _do_prepend(arr, mean_chunk.repeat(pad_amt, axis), axis=axis)
-
-
-def _append_mean(arr, pad_amt, num, axis=-1):
+def _get_stats(padded, axis, width_pair, length_pair, stat_func):
"""
- Append `pad_amt` mean values along `axis`.
+ Calculate statistic for the empty-padded array in given dimnsion.
Parameters
----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to append.
- num : int
- Depth into `arr` along `axis` to calculate mean.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
+ padded : ndarray
+ Empty-padded array.
axis : int
- Axis along which to pad `arr`.
+ Dimension in which the statistic is calculated.
+ width_pair : (int, int)
+ Pair of widths that mark the pad area on both sides in the given
+ dimension.
+ length_pair : 2-element sequence of None or int
+ Gives the number of values in valid area from each side that is
+ taken into account when calculating the statistic. If None the entire
+ valid area in `padded` is considered.
+ stat_func : function
+ Function to compute statistic. The expected signature is
+ ``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``.
Returns
-------
- padarr : ndarray
- Output array, with `pad_amt` values appended along `axis`. The
- appended region is the maximum of the final `num` values along `axis`.
-
- """
- if pad_amt == 0:
- return arr
-
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _append_edge(arr, pad_amt, axis)
-
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
-
- # Slice a chunk from the edge to calculate stats on
- if num is not None:
- mean_slice = _slice_last(arr.shape, num, axis=axis)
- else:
- mean_slice = tuple(slice(None) for x in arr.shape)
-
- # Extract slice, calculate mean
- mean_chunk = arr[mean_slice].mean(axis=axis, keepdims=True)
- _round_ifneeded(mean_chunk, arr.dtype)
-
- # Concatenate `arr` with `mean_chunk`, extended along `axis` by `pad_amt`
- return _do_append(arr, mean_chunk.repeat(pad_amt, axis), axis=axis)
-
-
-def _prepend_med(arr, pad_amt, num, axis=-1):
- """
- Prepend `pad_amt` median values along `axis`.
+ left_stat, right_stat : ndarray
+ Calculated statistic for both sides of `padded`.
+ """
+ # Calculate indices of the edges of the area with original values
+ left_index = width_pair[0]
+ right_index = padded.shape[axis] - width_pair[1]
+ # as well as its length
+ max_length = right_index - left_index
+
+ # Limit stat_lengths to max_length
+ left_length, right_length = length_pair
+ if left_length is None or max_length < left_length:
+ left_length = max_length
+ if right_length is None or max_length < right_length:
+ right_length = max_length
+
+ # Calculate statistic for the left side
+ left_slice = _slice_at_axis(
+ slice(left_index, left_index + left_length), axis)
+ left_chunk = padded[left_slice]
+ left_stat = stat_func(left_chunk, axis=axis, keepdims=True)
+ _round_if_needed(left_stat, padded.dtype)
+
+ if left_length == right_length == max_length:
+ # return early as right_stat must be identical to left_stat
+ return left_stat, left_stat
+
+ # Calculate statistic for the right side
+ right_slice = _slice_at_axis(
+ slice(right_index - right_length, right_index), axis)
+ right_chunk = padded[right_slice]
+ right_stat = stat_func(right_chunk, axis=axis, keepdims=True)
+ _round_if_needed(right_stat, padded.dtype)
+ return left_stat, right_stat
+
+
+def _set_reflect_both(padded, axis, width_pair, method, include_edge=False):
+ """
+ Pad `axis` of `arr` with reflection.
Parameters
----------
- arr : ndarray
+ padded : ndarray
Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to prepend.
- num : int
- Depth into `arr` along `axis` to calculate median.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
axis : int
Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` values prepended along `axis`. The
- prepended region is the median of the first `num` values along `axis`.
-
- """
- if pad_amt == 0:
- return arr
-
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _prepend_edge(arr, pad_amt, axis)
-
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
-
- # Slice a chunk from the edge to calculate stats on
- med_slice = _slice_first(arr.shape, num, axis=axis)
-
- # Extract slice, calculate median
- med_chunk = np.median(arr[med_slice], axis=axis, keepdims=True)
- _round_ifneeded(med_chunk, arr.dtype)
-
- # Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt`
- return _do_prepend(arr, med_chunk.repeat(pad_amt, axis), axis=axis)
-
-
-def _append_med(arr, pad_amt, num, axis=-1):
- """
- Append `pad_amt` median values along `axis`.
-
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to append.
- num : int
- Depth into `arr` along `axis` to calculate median.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
- axis : int
- Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` values appended along `axis`. The
- appended region is the median of the final `num` values along `axis`.
-
- """
- if pad_amt == 0:
- return arr
-
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _append_edge(arr, pad_amt, axis)
-
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
-
- # Slice a chunk from the edge to calculate stats on
- if num is not None:
- med_slice = _slice_last(arr.shape, num, axis=axis)
- else:
- med_slice = tuple(slice(None) for x in arr.shape)
-
- # Extract slice, calculate median
- med_chunk = np.median(arr[med_slice], axis=axis, keepdims=True)
- _round_ifneeded(med_chunk, arr.dtype)
-
- # Concatenate `arr` with `med_chunk`, extended along `axis` by `pad_amt`
- return _do_append(arr, med_chunk.repeat(pad_amt, axis), axis=axis)
-
-
-def _prepend_min(arr, pad_amt, num, axis=-1):
- """
- Prepend `pad_amt` minimum values along `axis`.
-
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to prepend.
- num : int
- Depth into `arr` along `axis` to calculate minimum.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
- axis : int
- Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` values prepended along `axis`. The
- prepended region is the minimum of the first `num` values along
- `axis`.
-
- """
- if pad_amt == 0:
- return arr
-
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _prepend_edge(arr, pad_amt, axis)
-
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
-
- # Slice a chunk from the edge to calculate stats on
- min_slice = _slice_first(arr.shape, num, axis=axis)
-
- # Extract slice, calculate min
- min_chunk = arr[min_slice].min(axis=axis, keepdims=True)
-
- # Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt`
- return _do_prepend(arr, min_chunk.repeat(pad_amt, axis), axis=axis)
-
-
-def _append_min(arr, pad_amt, num, axis=-1):
- """
- Append `pad_amt` median values along `axis`.
-
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : int
- Amount of padding to append.
- num : int
- Depth into `arr` along `axis` to calculate minimum.
- Range: [1, `arr.shape[axis]`] or None (entire axis)
- axis : int
- Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt` values appended along `axis`. The
- appended region is the minimum of the final `num` values along `axis`.
-
- """
- if pad_amt == 0:
- return arr
-
- # Equivalent to edge padding for single value, so do that instead
- if num == 1:
- return _append_edge(arr, pad_amt, axis)
-
- # Use entire array if `num` is too large
- if num is not None:
- if num >= arr.shape[axis]:
- num = None
-
- # Slice a chunk from the edge to calculate stats on
- if num is not None:
- min_slice = _slice_last(arr.shape, num, axis=axis)
- else:
- min_slice = tuple(slice(None) for x in arr.shape)
-
- # Extract slice, calculate min
- min_chunk = arr[min_slice].min(axis=axis, keepdims=True)
-
- # Concatenate `arr` with `min_chunk`, extended along `axis` by `pad_amt`
- return _do_append(arr, min_chunk.repeat(pad_amt, axis), axis=axis)
-
-
-def _pad_ref(arr, pad_amt, method, axis=-1):
- """
- Pad `axis` of `arr` by reflection.
-
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
- pad_amt : tuple of ints, length 2
- Padding to (prepend, append) along `axis`.
+ width_pair : (int, int)
+ Pair of widths that mark the pad area on both sides in the given
+ dimension.
method : str
Controls method of reflection; options are 'even' or 'odd'.
- axis : int
- Axis along which to pad `arr`.
+ include_edge : bool
+ If true, edge value is included in reflection, otherwise the edge
+ value forms the symmetric axis to the reflection.
Returns
-------
- padarr : ndarray
- Output array, with `pad_amt[0]` values prepended and `pad_amt[1]`
- values appended along `axis`. Both regions are padded with reflected
- values from the original array.
-
- Notes
- -----
- This algorithm does not pad with repetition, i.e. the edges are not
- repeated in the reflection. For that behavior, use `mode='symmetric'`.
-
- The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
- single function, lest the indexing tricks in non-integer multiples of the
- original shape would violate repetition in the final iteration.
-
- """
- # Implicit booleanness to test for zero (or None) in any scalar type
- if pad_amt[0] == 0 and pad_amt[1] == 0:
- return arr
-
- ##########################################################################
- # Prepended region
-
- # Slice off a reverse indexed chunk from near edge to pad `arr` before
- ref_slice = _slice_at_axis(arr.shape, slice(pad_amt[0], 0, -1), axis=axis)
-
- ref_chunk1 = arr[ref_slice]
-
- # Memory/computationally more expensive, only do this if `method='odd'`
- if 'odd' in method and pad_amt[0] > 0:
- edge_slice1 = _slice_first(arr.shape, 1, axis=axis)
- edge_chunk = arr[edge_slice1]
- ref_chunk1 = 2 * edge_chunk - ref_chunk1
- del edge_chunk
-
- ##########################################################################
- # Appended region
-
- # Slice off a reverse indexed chunk from far edge to pad `arr` after
- start = arr.shape[axis] - pad_amt[1] - 1
- end = arr.shape[axis] - 1
- ref_slice = _slice_at_axis(arr.shape, slice(start, end), axis=axis)
- rev_idx = _slice_at_axis(arr.shape, slice(None, None, -1), axis=axis)
- ref_chunk2 = arr[ref_slice][rev_idx]
-
- if 'odd' in method:
- edge_slice2 = _slice_last(arr.shape, 1, axis=axis)
- edge_chunk = arr[edge_slice2]
- ref_chunk2 = 2 * edge_chunk - ref_chunk2
- del edge_chunk
-
- # Concatenate `arr` with both chunks, extending along `axis`
- return np.concatenate((ref_chunk1, arr, ref_chunk2), axis=axis)
-
-
-def _pad_sym(arr, pad_amt, method, axis=-1):
- """
- Pad `axis` of `arr` by symmetry.
-
- Parameters
- ----------
- arr : ndarray
- Input array of arbitrary shape.
pad_amt : tuple of ints, length 2
- Padding to (prepend, append) along `axis`.
- method : str
- Controls method of symmetry; options are 'even' or 'odd'.
- axis : int
- Axis along which to pad `arr`.
-
- Returns
- -------
- padarr : ndarray
- Output array, with `pad_amt[0]` values prepended and `pad_amt[1]`
- values appended along `axis`. Both regions are padded with symmetric
- values from the original array.
-
- Notes
- -----
- This algorithm DOES pad with repetition, i.e. the edges are repeated.
- For padding without repeated edges, use `mode='reflect'`.
-
- The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
- single function, lest the indexing tricks in non-integer multiples of the
- original shape would violate repetition in the final iteration.
-
+ New index positions of padding to do along the `axis`. If these are
+ both 0, padding is done in this dimension.
"""
- # Implicit booleanness to test for zero (or None) in any scalar type
- if pad_amt[0] == 0 and pad_amt[1] == 0:
- return arr
-
- ##########################################################################
- # Prepended region
-
- # Slice off a reverse indexed chunk from near edge to pad `arr` before
- sym_slice = _slice_first(arr.shape, pad_amt[0], axis=axis)
- rev_idx = _slice_at_axis(arr.shape, slice(None, None, -1), axis=axis)
- sym_chunk1 = arr[sym_slice][rev_idx]
-
- # Memory/computationally more expensive, only do this if `method='odd'`
- if 'odd' in method and pad_amt[0] > 0:
- edge_slice1 = _slice_first(arr.shape, 1, axis=axis)
- edge_chunk = arr[edge_slice1]
- sym_chunk1 = 2 * edge_chunk - sym_chunk1
- del edge_chunk
-
- ##########################################################################
- # Appended region
+ left_pad, right_pad = width_pair
+ old_length = padded.shape[axis] - right_pad - left_pad
- # Slice off a reverse indexed chunk from far edge to pad `arr` after
- sym_slice = _slice_last(arr.shape, pad_amt[1], axis=axis)
- sym_chunk2 = arr[sym_slice][rev_idx]
-
- if 'odd' in method:
- edge_slice2 = _slice_last(arr.shape, 1, axis=axis)
- edge_chunk = arr[edge_slice2]
- sym_chunk2 = 2 * edge_chunk - sym_chunk2
- del edge_chunk
-
- # Concatenate `arr` with both chunks, extending along `axis`
- return np.concatenate((sym_chunk1, arr, sym_chunk2), axis=axis)
-
-
-def _pad_wrap(arr, pad_amt, axis=-1):
- """
- Pad `axis` of `arr` via wrapping.
+ if include_edge:
+ # Edge is included, we need to offset the pad amount by 1
+ edge_offset = 1
+ else:
+ edge_offset = 0 # Edge is not included, no need to offset pad amount
+ old_length -= 1 # but must be omitted from the chunk
+
+ if left_pad > 0:
+ # Pad with reflected values on left side:
+ # First limit chunk size which can't be larger than pad area
+ chunk_length = min(old_length, left_pad)
+ # Slice right to left, stop on or next to edge, start relative to stop
+ stop = left_pad - edge_offset
+ start = stop + chunk_length
+ left_slice = _slice_at_axis(slice(start, stop, -1), axis)
+ left_chunk = padded[left_slice]
+
+ if method == "odd":
+ # Negate chunk and align with edge
+ edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis)
+ left_chunk = 2 * padded[edge_slice] - left_chunk
+
+ # Insert chunk into padded area
+ start = left_pad - chunk_length
+ stop = left_pad
+ pad_area = _slice_at_axis(slice(start, stop), axis)
+ padded[pad_area] = left_chunk
+ # Adjust pointer to left edge for next iteration
+ left_pad -= chunk_length
+
+ if right_pad > 0:
+ # Pad with reflected values on right side:
+ # First limit chunk size which can't be larger than pad area
+ chunk_length = min(old_length, right_pad)
+ # Slice right to left, start on or next to edge, stop relative to start
+ start = -right_pad + edge_offset - 2
+ stop = start - chunk_length
+ right_slice = _slice_at_axis(slice(start, stop, -1), axis)
+ right_chunk = padded[right_slice]
+
+ if method == "odd":
+ # Negate chunk and align with edge
+ edge_slice = _slice_at_axis(
+ slice(-right_pad - 1, -right_pad), axis)
+ right_chunk = 2 * padded[edge_slice] - right_chunk
+
+ # Insert chunk into padded area
+ start = padded.shape[axis] - right_pad
+ stop = start + chunk_length
+ pad_area = _slice_at_axis(slice(start, stop), axis)
+ padded[pad_area] = right_chunk
+ # Adjust pointer to right edge for next iteration
+ right_pad -= chunk_length
+
+ return left_pad, right_pad
+
+
+def _set_wrap_both(padded, axis, width_pair):
+ """
+ Pad `axis` of `arr` with wrapped values.
Parameters
----------
- arr : ndarray
+ padded : ndarray
Input array of arbitrary shape.
- pad_amt : tuple of ints, length 2
- Padding to (prepend, append) along `axis`.
axis : int
Axis along which to pad `arr`.
+ width_pair : (int, int)
+ Pair of widths that mark the pad area on both sides in the given
+ dimension.
Returns
-------
- padarr : ndarray
- Output array, with `pad_amt[0]` values prepended and `pad_amt[1]`
- values appended along `axis`. Both regions are padded wrapped values
- from the opposite end of `axis`.
-
- Notes
- -----
- This method of padding is also known as 'tile' or 'tiling'.
-
- The modes 'reflect', 'symmetric', and 'wrap' must be padded with a
- single function, lest the indexing tricks in non-integer multiples of the
- original shape would violate repetition in the final iteration.
-
- """
- # Implicit booleanness to test for zero (or None) in any scalar type
- if pad_amt[0] == 0 and pad_amt[1] == 0:
- return arr
-
- ##########################################################################
- # Prepended region
-
- # Slice off a reverse indexed chunk from near edge to pad `arr` before
- wrap_slice = _slice_last(arr.shape, pad_amt[0], axis=axis)
- wrap_chunk1 = arr[wrap_slice]
-
- ##########################################################################
- # Appended region
-
- # Slice off a reverse indexed chunk from far edge to pad `arr` after
- wrap_slice = _slice_first(arr.shape, pad_amt[1], axis=axis)
- wrap_chunk2 = arr[wrap_slice]
-
- # Concatenate `arr` with both chunks, extending along `axis`
- return np.concatenate((wrap_chunk1, arr, wrap_chunk2), axis=axis)
+ pad_amt : tuple of ints, length 2
+ New index positions of padding to do along the `axis`. If these are
+ both 0, padding is done in this dimension.
+ """
+ left_pad, right_pad = width_pair
+ period = padded.shape[axis] - right_pad - left_pad
+
+ # If the current dimension of `arr` doesn't contain enough valid values
+ # (not part of the undefined pad area) we need to pad multiple times.
+ # Each time the pad area shrinks on both sides which is communicated with
+ # these variables.
+ new_left_pad = 0
+ new_right_pad = 0
+
+ if left_pad > 0:
+ # Pad with wrapped values on left side
+ # First slice chunk from right side of the non-pad area.
+ # Use min(period, left_pad) to ensure that chunk is not larger than
+ # pad area
+ right_slice = _slice_at_axis(
+ slice(-right_pad - min(period, left_pad),
+ -right_pad if right_pad != 0 else None),
+ axis
+ )
+ right_chunk = padded[right_slice]
+
+ if left_pad > period:
+ # Chunk is smaller than pad area
+ pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis)
+ new_left_pad = left_pad - period
+ else:
+ # Chunk matches pad area
+ pad_area = _slice_at_axis(slice(None, left_pad), axis)
+ padded[pad_area] = right_chunk
+
+ if right_pad > 0:
+ # Pad with wrapped values on right side
+ # First slice chunk from left side of the non-pad area.
+ # Use min(period, right_pad) to ensure that chunk is not larger than
+ # pad area
+ left_slice = _slice_at_axis(
+ slice(left_pad, left_pad + min(period, right_pad),), axis)
+ left_chunk = padded[left_slice]
+
+ if right_pad > period:
+ # Chunk is smaller than pad area
+ pad_area = _slice_at_axis(
+ slice(-right_pad, -right_pad + period), axis)
+ new_right_pad = right_pad - period
+ else:
+ # Chunk matches pad area
+ pad_area = _slice_at_axis(slice(-right_pad, None), axis)
+ padded[pad_area] = left_chunk
+
+ return new_left_pad, new_right_pad
def _as_pairs(x, ndim, as_index=False):
@@ -953,23 +567,23 @@ def _as_pairs(x, ndim, as_index=False):
return np.broadcast_to(x, (ndim, 2)).tolist()
-###############################################################################
-# Public functions
-
-
def _pad_dispatcher(array, pad_width, mode=None, **kwargs):
return (array,)
+###############################################################################
+# Public functions
+
+
@array_function_dispatch(_pad_dispatcher, module='numpy')
def pad(array, pad_width, mode='constant', **kwargs):
"""
- Pads an array.
+ Pad an array.
Parameters
----------
array : array_like of rank N
- Input array
+ The array to pad.
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis.
((before_1, after_1), ... (before_N, after_N)) unique pad widths
@@ -1010,6 +624,11 @@ def pad(array, pad_width, mode='constant', **kwargs):
Pads with the wrap of the vector along the axis.
The first values are used to pad the end and the
end values are used to pad the beginning.
+ 'empty'
+ Pads with undefined values.
+
+ .. versionadded:: 1.17
+
<function>
Padding function, see Notes.
stat_length : sequence or int, optional
@@ -1099,7 +718,7 @@ def pad(array, pad_width, mode='constant', **kwargs):
Examples
--------
>>> a = [1, 2, 3, 4, 5]
- >>> np.pad(a, (2,3), 'constant', constant_values=(4, 6))
+ >>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
array([4, 4, 1, ..., 6, 6, 6])
>>> np.pad(a, (2, 3), 'edge')
@@ -1165,15 +784,30 @@ def pad(array, pad_width, mode='constant', **kwargs):
[100, 100, 100, 100, 100, 100, 100],
[100, 100, 100, 100, 100, 100, 100]])
"""
- if not np.asarray(pad_width).dtype.kind == 'i':
+ array = np.asarray(array)
+ pad_width = np.asarray(pad_width)
+
+ if not pad_width.dtype.kind == 'i':
raise TypeError('`pad_width` must be of integral type.')
- narray = np.array(array)
- pad_width = _as_pairs(pad_width, narray.ndim, as_index=True)
+ # Broadcast to shape (array.ndim, 2)
+ pad_width = _as_pairs(pad_width, array.ndim, as_index=True)
- allowedkwargs = {
+ if callable(mode):
+ # Old behavior: Use user-supplied function with np.apply_along_axis
+ function = mode
+ # Create a new zero padded array
+ padded, _ = _pad_simple(array, pad_width, fill_value=0)
+ # And apply along each axis
+ for axis in range(padded.ndim):
+ np.apply_along_axis(
+ function, axis, padded, pad_width[axis], axis, kwargs)
+ return padded
+
+ # Make sure that no unsupported keywords were passed for the current mode
+ allowed_kwargs = {
+ 'empty': [], 'edge': [], 'wrap': [],
'constant': ['constant_values'],
- 'edge': [],
'linear_ramp': ['end_values'],
'maximum': ['stat_length'],
'mean': ['stat_length'],
@@ -1181,175 +815,101 @@ def pad(array, pad_width, mode='constant', **kwargs):
'minimum': ['stat_length'],
'reflect': ['reflect_type'],
'symmetric': ['reflect_type'],
- 'wrap': [],
- }
-
- kwdefaults = {
- 'stat_length': None,
- 'constant_values': 0,
- 'end_values': 0,
- 'reflect_type': 'even',
- }
-
- if isinstance(mode, np.compat.basestring):
- # Make sure have allowed kwargs appropriate for mode
- for key in kwargs:
- if key not in allowedkwargs[mode]:
- raise ValueError('%s keyword not in allowed keywords %s' %
- (key, allowedkwargs[mode]))
-
- # Set kwarg defaults
- for kw in allowedkwargs[mode]:
- kwargs.setdefault(kw, kwdefaults[kw])
-
- # Need to only normalize particular keywords.
- for i in kwargs:
- if i == 'stat_length':
- kwargs[i] = _as_pairs(kwargs[i], narray.ndim, as_index=True)
- if i in ['end_values', 'constant_values']:
- kwargs[i] = _as_pairs(kwargs[i], narray.ndim)
- else:
- # Drop back to old, slower np.apply_along_axis mode for user-supplied
- # vector function
- function = mode
-
- # Create a new padded array
- rank = list(range(narray.ndim))
- total_dim_increase = [np.sum(pad_width[i]) for i in rank]
- offset_slices = tuple(
- slice(pad_width[i][0], pad_width[i][0] + narray.shape[i])
- for i in rank)
- new_shape = np.array(narray.shape) + total_dim_increase
- newmat = np.zeros(new_shape, narray.dtype)
-
- # Insert the original array into the padded array
- newmat[offset_slices] = narray
-
- # This is the core of pad ...
- for iaxis in rank:
- np.apply_along_axis(function,
- iaxis,
- newmat,
- pad_width[iaxis],
- iaxis,
- kwargs)
- return newmat
-
- # If we get here, use new padding method
- newmat = narray.copy()
-
- # API preserved, but completely new algorithm which pads by building the
- # entire block to pad before/after `arr` with in one step, for each axis.
- if mode == 'constant':
- for axis, ((pad_before, pad_after), (before_val, after_val)) \
- in enumerate(zip(pad_width, kwargs['constant_values'])):
- newmat = _prepend_const(newmat, pad_before, before_val, axis)
- newmat = _append_const(newmat, pad_after, after_val, axis)
-
- elif mode == 'edge':
- for axis, (pad_before, pad_after) in enumerate(pad_width):
- newmat = _prepend_edge(newmat, pad_before, axis)
- newmat = _append_edge(newmat, pad_after, axis)
-
- elif mode == 'linear_ramp':
- for axis, ((pad_before, pad_after), (before_val, after_val)) \
- in enumerate(zip(pad_width, kwargs['end_values'])):
- newmat = _prepend_ramp(newmat, pad_before, before_val, axis)
- newmat = _append_ramp(newmat, pad_after, after_val, axis)
-
- elif mode == 'maximum':
- for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
- in enumerate(zip(pad_width, kwargs['stat_length'])):
- newmat = _prepend_max(newmat, pad_before, chunk_before, axis)
- newmat = _append_max(newmat, pad_after, chunk_after, axis)
-
- elif mode == 'mean':
- for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
- in enumerate(zip(pad_width, kwargs['stat_length'])):
- newmat = _prepend_mean(newmat, pad_before, chunk_before, axis)
- newmat = _append_mean(newmat, pad_after, chunk_after, axis)
-
- elif mode == 'median':
- for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
- in enumerate(zip(pad_width, kwargs['stat_length'])):
- newmat = _prepend_med(newmat, pad_before, chunk_before, axis)
- newmat = _append_med(newmat, pad_after, chunk_after, axis)
-
- elif mode == 'minimum':
- for axis, ((pad_before, pad_after), (chunk_before, chunk_after)) \
- in enumerate(zip(pad_width, kwargs['stat_length'])):
- newmat = _prepend_min(newmat, pad_before, chunk_before, axis)
- newmat = _append_min(newmat, pad_after, chunk_after, axis)
-
- elif mode == 'reflect':
- for axis, (pad_before, pad_after) in enumerate(pad_width):
- if narray.shape[axis] == 0:
- # Axes with non-zero padding cannot be empty.
- if pad_before > 0 or pad_after > 0:
- raise ValueError("There aren't any elements to reflect"
- " in axis {} of `array`".format(axis))
- # Skip zero padding on empty axes.
- continue
-
- # Recursive padding along any axis where `pad_amt` is too large
- # for indexing tricks. We can only safely pad the original axis
- # length, to keep the period of the reflections consistent.
- if ((pad_before > 0) or
- (pad_after > 0)) and newmat.shape[axis] == 1:
+ }
+ try:
+ unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode])
+ except KeyError:
+ raise ValueError("mode '{}' is not supported".format(mode))
+ if unsupported_kwargs:
+ raise ValueError("unsupported keyword arguments for mode '{}': {}"
+ .format(mode, unsupported_kwargs))
+
+ stat_functions = {"maximum": np.max, "minimum": np.min,
+ "mean": np.mean, "median": np.median}
+
+ # Create array with final shape and original values
+ # (padded area is undefined)
+ padded, original_area_slice = _pad_simple(array, pad_width)
+ # And prepare iteration over all dimensions
+ # (zipping may be more readable than using enumerate)
+ axes = range(padded.ndim)
+
+ if mode == "constant":
+ values = kwargs.get("constant_values", 0)
+ values = _as_pairs(values, padded.ndim)
+ for axis, width_pair, value_pair in zip(axes, pad_width, values):
+ roi = _view_roi(padded, original_area_slice, axis)
+ _set_pad_area(roi, axis, width_pair, value_pair)
+
+ elif mode == "empty":
+ pass # Do nothing as _pad_simple already returned the correct result
+
+ elif array.size == 0:
+ # Only modes "constant" and "empty" can extend empty axes, all other
+ # modes depend on `array` not being empty
+ # -> ensure every empty axis is only "padded with 0"
+ for axis, width_pair in zip(axes, pad_width):
+ if array.shape[axis] == 0 and any(width_pair):
+ raise ValueError(
+ "can't extend empty axis {} using modes other than "
+ "'constant' or 'empty'".format(axis)
+ )
+ # passed, don't need to do anything more as _pad_simple already
+ # returned the correct result
+
+ elif mode == "edge":
+ for axis, width_pair in zip(axes, pad_width):
+ roi = _view_roi(padded, original_area_slice, axis)
+ edge_pair = _get_edges(roi, axis, width_pair)
+ _set_pad_area(roi, axis, width_pair, edge_pair)
+
+ elif mode == "linear_ramp":
+ end_values = kwargs.get("end_values", 0)
+ end_values = _as_pairs(end_values, padded.ndim)
+ for axis, width_pair, value_pair in zip(axes, pad_width, end_values):
+ roi = _view_roi(padded, original_area_slice, axis)
+ ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair)
+ _set_pad_area(roi, axis, width_pair, ramp_pair)
+
+ elif mode in stat_functions:
+ func = stat_functions[mode]
+ length = kwargs.get("stat_length", None)
+ length = _as_pairs(length, padded.ndim, as_index=True)
+ for axis, width_pair, length_pair in zip(axes, pad_width, length):
+ roi = _view_roi(padded, original_area_slice, axis)
+ stat_pair = _get_stats(roi, axis, width_pair, length_pair, func)
+ _set_pad_area(roi, axis, width_pair, stat_pair)
+
+ elif mode in {"reflect", "symmetric"}:
+ method = kwargs.get("reflect_type", "even")
+ include_edge = True if mode == "symmetric" else False
+ for axis, (left_index, right_index) in zip(axes, pad_width):
+ if array.shape[axis] == 1 and (left_index > 0 or right_index > 0):
# Extending singleton dimension for 'reflect' is legacy
# behavior; it really should raise an error.
- newmat = _prepend_edge(newmat, pad_before, axis)
- newmat = _append_edge(newmat, pad_after, axis)
+ edge_pair = _get_edges(padded, axis, (left_index, right_index))
+ _set_pad_area(
+ padded, axis, (left_index, right_index), edge_pair)
continue
- method = kwargs['reflect_type']
- safe_pad = newmat.shape[axis] - 1
- while ((pad_before > safe_pad) or (pad_after > safe_pad)):
- pad_iter_b = min(safe_pad,
- safe_pad * (pad_before // safe_pad))
- pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad))
- newmat = _pad_ref(newmat, (pad_iter_b,
- pad_iter_a), method, axis)
- pad_before -= pad_iter_b
- pad_after -= pad_iter_a
- safe_pad += pad_iter_b + pad_iter_a
- newmat = _pad_ref(newmat, (pad_before, pad_after), method, axis)
-
- elif mode == 'symmetric':
- for axis, (pad_before, pad_after) in enumerate(pad_width):
- # Recursive padding along any axis where `pad_amt` is too large
- # for indexing tricks. We can only safely pad the original axis
- # length, to keep the period of the reflections consistent.
- method = kwargs['reflect_type']
- safe_pad = newmat.shape[axis]
- while ((pad_before > safe_pad) or
- (pad_after > safe_pad)):
- pad_iter_b = min(safe_pad,
- safe_pad * (pad_before // safe_pad))
- pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad))
- newmat = _pad_sym(newmat, (pad_iter_b,
- pad_iter_a), method, axis)
- pad_before -= pad_iter_b
- pad_after -= pad_iter_a
- safe_pad += pad_iter_b + pad_iter_a
- newmat = _pad_sym(newmat, (pad_before, pad_after), method, axis)
-
- elif mode == 'wrap':
- for axis, (pad_before, pad_after) in enumerate(pad_width):
- # Recursive padding along any axis where `pad_amt` is too large
- # for indexing tricks. We can only safely pad the original axis
- # length, to keep the period of the reflections consistent.
- safe_pad = newmat.shape[axis]
- while ((pad_before > safe_pad) or
- (pad_after > safe_pad)):
- pad_iter_b = min(safe_pad,
- safe_pad * (pad_before // safe_pad))
- pad_iter_a = min(safe_pad, safe_pad * (pad_after // safe_pad))
- newmat = _pad_wrap(newmat, (pad_iter_b, pad_iter_a), axis)
-
- pad_before -= pad_iter_b
- pad_after -= pad_iter_a
- safe_pad += pad_iter_b + pad_iter_a
- newmat = _pad_wrap(newmat, (pad_before, pad_after), axis)
-
- return newmat
+ roi = _view_roi(padded, original_area_slice, axis)
+ while left_index > 0 or right_index > 0:
+ # Iteratively pad until dimension is filled with reflected
+ # values. This is necessary if the pad area is larger than
+ # the length of the original values in the current dimension.
+ left_index, right_index = _set_reflect_both(
+ roi, axis, (left_index, right_index),
+ method, include_edge
+ )
+
+ elif mode == "wrap":
+ for axis, (left_index, right_index) in zip(axes, pad_width):
+ roi = _view_roi(padded, original_area_slice, axis)
+ while left_index > 0 or right_index > 0:
+ # Iteratively pad until dimension is filled with wrapped
+ # values. This is necessary if the pad area is larger than
+ # the length of the original values in the current dimension.
+ left_index, right_index = _set_wrap_both(
+ roi, axis, (left_index, right_index))
+
+ return padded