diff options
author | Stefan van der Walt <stefan@sun.ac.za> | 2008-08-13 00:04:08 +0000 |
---|---|---|
committer | Stefan van der Walt <stefan@sun.ac.za> | 2008-08-13 00:04:08 +0000 |
commit | 83d7c02cad2ac076937ca868f901808c7fa1243d (patch) | |
tree | ba52d8db9beec532893d0b0f5eb8601baedc8f7d /numpy/lib/arrayterator.py | |
parent | c05d81d020f93edfc4fe1295c40b69174f62be4f (diff) | |
download | numpy-83d7c02cad2ac076937ca868f901808c7fa1243d.tar.gz |
Add Roberto de Almeida's Arrayterator.
Diffstat (limited to 'numpy/lib/arrayterator.py')
-rw-r--r-- | numpy/lib/arrayterator.py | 146 |
1 files changed, 146 insertions, 0 deletions
diff --git a/numpy/lib/arrayterator.py b/numpy/lib/arrayterator.py new file mode 100644 index 000000000..581e0b31e --- /dev/null +++ b/numpy/lib/arrayterator.py @@ -0,0 +1,146 @@ +""" +A buffered iterator for big arrays. + +This module solves the problem of iterating over a big file-based array +without having to read it into memory. The ``Arrayterator`` class wraps +an array object, and when iterated it will return subarrays with at most +``buf_size`` elements. + +The algorithm works by first finding a "running dimension", along which +the blocks will be extracted. Given an array of dimensions (d1, d2, ..., +dn), eg, if ``buf_size`` is smaller than ``d1`` the first dimension will +be used. If, on the other hand, + + d1 < buf_size < d1*d2 + +the second dimension will be used, and so on. Blocks are extracted along +this dimension, and when the last block is returned the process continues +from the next dimension, until all elements have been read. + +""" + +from __future__ import division + +from operator import mul + +__all__ = ['Arrayterator'] + +class Arrayterator(object): + """ + Buffered iterator for big arrays. + + This class creates a buffered iterator for reading big arrays in small + contiguous blocks. The class is useful for objects stored in the + filesystem. It allows iteration over the object *without* reading + everything in memory; instead, small blocks are read and iterated over. + + The class can be used with any object that supports multidimensional + slices, like variables from Scientific.IO.NetCDF, pynetcdf and ndarrays. + + """ + + def __init__(self, var, buf_size=None): + self.var = var + self.buf_size = buf_size + + self.start = [0 for dim in var.shape] + self.stop = [dim for dim in var.shape] + self.step = [1 for dim in var.shape] + + def __getattr__(self, attr): + return getattr(self.var, attr) + + def __getitem__(self, index): + """ + Return a new arrayterator. + + """ + # Fix index, handling ellipsis and incomplete slices. + if not isinstance(index, tuple): index = (index,) + fixed = [] + length, dims = len(index), len(self.shape) + for slice_ in index: + if slice_ is Ellipsis: + fixed.extend([slice(None)] * (dims-length+1)) + length = len(fixed) + elif isinstance(slice_, (int, long)): + fixed.append(slice(slice_, slice_+1, 1)) + else: + fixed.append(slice_) + index = tuple(fixed) + if len(index) < dims: + index += (slice(None),) * (dims-len(index)) + + # Return a new arrayterator object. + out = self.__class__(self.var, self.buf_size) + for i, (start, stop, step, slice_) in enumerate( + zip(self.start, self.stop, self.step, index)): + out.start[i] = start + (slice_.start or 0) + out.step[i] = step * (slice_.step or 1) + out.stop[i] = start + (slice_.stop or stop-start) + out.stop[i] = min(stop, out.stop[i]) + return out + + def __array__(self): + """ + Return corresponding data. + + """ + slice_ = tuple(slice(*t) for t in zip( + self.start, self.stop, self.step)) + return self.var[slice_] + + @property + def flat(self): + for block in self: + for value in block.flat: + yield value + + @property + def shape(self): + return tuple(((stop-start-1)//step+1) for start, stop, step in + zip(self.start, self.stop, self.step)) + + def __iter__(self): + # Skip arrays with degenerate dimensions + if [dim for dim in self.shape if dim <= 0]: raise StopIteration + + start = self.start[:] + stop = self.stop[:] + step = self.step[:] + ndims = len(self.var.shape) + + while 1: + count = self.buf_size or reduce(mul, self.shape) + + # iterate over each dimension, looking for the + # running dimension (ie, the dimension along which + # the blocks will be built from) + rundim = 0 + for i in range(ndims-1, -1, -1): + # if count is zero we ran out of elements to read + # along higher dimensions, so we read only a single position + if count == 0: + stop[i] = start[i]+1 + elif count <= self.shape[i]: # limit along this dimension + stop[i] = start[i] + count*step[i] + rundim = i + else: + stop[i] = self.stop[i] # read everything along this + # dimension + stop[i] = min(self.stop[i], stop[i]) + count = count//self.shape[i] + + # yield a block + slice_ = tuple(slice(*t) for t in zip(start, stop, step)) + yield self.var[slice_] + + # Update start position, taking care of overflow to + # other dimensions + start[rundim] = stop[rundim] # start where we stopped + for i in range(ndims-1, 0, -1): + if start[i] >= self.stop[i]: + start[i] = self.start[i] + start[i-1] += self.step[i-1] + if start[0] >= self.stop[0]: + raise StopIteration |