summaryrefslogtreecommitdiff
path: root/numpy/lib/arrayterator.py
diff options
context:
space:
mode:
authorStefan van der Walt <stefan@sun.ac.za>2008-08-13 00:04:08 +0000
committerStefan van der Walt <stefan@sun.ac.za>2008-08-13 00:04:08 +0000
commit83d7c02cad2ac076937ca868f901808c7fa1243d (patch)
treeba52d8db9beec532893d0b0f5eb8601baedc8f7d /numpy/lib/arrayterator.py
parentc05d81d020f93edfc4fe1295c40b69174f62be4f (diff)
downloadnumpy-83d7c02cad2ac076937ca868f901808c7fa1243d.tar.gz
Add Roberto de Almeida's Arrayterator.
Diffstat (limited to 'numpy/lib/arrayterator.py')
-rw-r--r--numpy/lib/arrayterator.py146
1 files changed, 146 insertions, 0 deletions
diff --git a/numpy/lib/arrayterator.py b/numpy/lib/arrayterator.py
new file mode 100644
index 000000000..581e0b31e
--- /dev/null
+++ b/numpy/lib/arrayterator.py
@@ -0,0 +1,146 @@
+"""
+A buffered iterator for big arrays.
+
+This module solves the problem of iterating over a big file-based array
+without having to read it into memory. The ``Arrayterator`` class wraps
+an array object, and when iterated it will return subarrays with at most
+``buf_size`` elements.
+
+The algorithm works by first finding a "running dimension", along which
+the blocks will be extracted. Given an array of dimensions (d1, d2, ...,
+dn), eg, if ``buf_size`` is smaller than ``d1`` the first dimension will
+be used. If, on the other hand,
+
+ d1 < buf_size < d1*d2
+
+the second dimension will be used, and so on. Blocks are extracted along
+this dimension, and when the last block is returned the process continues
+from the next dimension, until all elements have been read.
+
+"""
+
+from __future__ import division
+
+from operator import mul
+
+__all__ = ['Arrayterator']
+
+class Arrayterator(object):
+ """
+ Buffered iterator for big arrays.
+
+ This class creates a buffered iterator for reading big arrays in small
+ contiguous blocks. The class is useful for objects stored in the
+ filesystem. It allows iteration over the object *without* reading
+ everything in memory; instead, small blocks are read and iterated over.
+
+ The class can be used with any object that supports multidimensional
+ slices, like variables from Scientific.IO.NetCDF, pynetcdf and ndarrays.
+
+ """
+
+ def __init__(self, var, buf_size=None):
+ self.var = var
+ self.buf_size = buf_size
+
+ self.start = [0 for dim in var.shape]
+ self.stop = [dim for dim in var.shape]
+ self.step = [1 for dim in var.shape]
+
+ def __getattr__(self, attr):
+ return getattr(self.var, attr)
+
+ def __getitem__(self, index):
+ """
+ Return a new arrayterator.
+
+ """
+ # Fix index, handling ellipsis and incomplete slices.
+ if not isinstance(index, tuple): index = (index,)
+ fixed = []
+ length, dims = len(index), len(self.shape)
+ for slice_ in index:
+ if slice_ is Ellipsis:
+ fixed.extend([slice(None)] * (dims-length+1))
+ length = len(fixed)
+ elif isinstance(slice_, (int, long)):
+ fixed.append(slice(slice_, slice_+1, 1))
+ else:
+ fixed.append(slice_)
+ index = tuple(fixed)
+ if len(index) < dims:
+ index += (slice(None),) * (dims-len(index))
+
+ # Return a new arrayterator object.
+ out = self.__class__(self.var, self.buf_size)
+ for i, (start, stop, step, slice_) in enumerate(
+ zip(self.start, self.stop, self.step, index)):
+ out.start[i] = start + (slice_.start or 0)
+ out.step[i] = step * (slice_.step or 1)
+ out.stop[i] = start + (slice_.stop or stop-start)
+ out.stop[i] = min(stop, out.stop[i])
+ return out
+
+ def __array__(self):
+ """
+ Return corresponding data.
+
+ """
+ slice_ = tuple(slice(*t) for t in zip(
+ self.start, self.stop, self.step))
+ return self.var[slice_]
+
+ @property
+ def flat(self):
+ for block in self:
+ for value in block.flat:
+ yield value
+
+ @property
+ def shape(self):
+ return tuple(((stop-start-1)//step+1) for start, stop, step in
+ zip(self.start, self.stop, self.step))
+
+ def __iter__(self):
+ # Skip arrays with degenerate dimensions
+ if [dim for dim in self.shape if dim <= 0]: raise StopIteration
+
+ start = self.start[:]
+ stop = self.stop[:]
+ step = self.step[:]
+ ndims = len(self.var.shape)
+
+ while 1:
+ count = self.buf_size or reduce(mul, self.shape)
+
+ # iterate over each dimension, looking for the
+ # running dimension (ie, the dimension along which
+ # the blocks will be built from)
+ rundim = 0
+ for i in range(ndims-1, -1, -1):
+ # if count is zero we ran out of elements to read
+ # along higher dimensions, so we read only a single position
+ if count == 0:
+ stop[i] = start[i]+1
+ elif count <= self.shape[i]: # limit along this dimension
+ stop[i] = start[i] + count*step[i]
+ rundim = i
+ else:
+ stop[i] = self.stop[i] # read everything along this
+ # dimension
+ stop[i] = min(self.stop[i], stop[i])
+ count = count//self.shape[i]
+
+ # yield a block
+ slice_ = tuple(slice(*t) for t in zip(start, stop, step))
+ yield self.var[slice_]
+
+ # Update start position, taking care of overflow to
+ # other dimensions
+ start[rundim] = stop[rundim] # start where we stopped
+ for i in range(ndims-1, 0, -1):
+ if start[i] >= self.stop[i]:
+ start[i] = self.start[i]
+ start[i-1] += self.step[i-1]
+ if start[0] >= self.stop[0]:
+ raise StopIteration