summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
authorUddeshya Singh <singhuddeshyaofficial@gmail.com>2018-07-13 19:52:44 +0530
committerGitHub <noreply@github.com>2018-07-13 19:52:44 +0530
commit1f41265ddac77a66e2bf735ce970952d0f067122 (patch)
tree4796e3732d0f99fa455a5cd3f8c48ad6e2c4c8cb /numpy/lib/function_base.py
parent4862c1333e8b51a409659ada3496ae1ee3675df9 (diff)
downloadnumpy-1f41265ddac77a66e2bf735ce970952d0f067122.tar.gz
Update function_base.py
* fixed grammatical mistakes * added a space before Example
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py9
1 files changed, 5 insertions, 4 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 03024db3c..42aee22b7 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -310,10 +310,10 @@ def average(a, axis=None, weights=None, returned=False):
of the weights as the second element. `sum_of_weights` is of the
same type as `average`. The result dtype follows a genereal pattern.
If `weights` is None, the result dtype will be that of `a` , or `float64`
- if `a` is integral. Otherwise, if `weights` is not None and `a` is non
+ if `a` is integral. Otherwise, if `weights` is not None and `a` is non-
integral, the result type will be the type of lowest precision capable of
- representing values of both `a` and `weights` but if `a` happens to be
- integral, the previous rules still applies but the result dtype would
+ representing values of both `a` and `weights`. If `a` happens to be
+ integral, the previous rules still applies but the result dtype will
at least be `float64`.
Raises
@@ -332,7 +332,8 @@ def average(a, axis=None, weights=None, returned=False):
ma.average : average for masked arrays -- useful if your data contains
"missing" values
numpy.result_type : Returns the type that results from applying the
- NumPy type promotion rules to the arguments.
+ numpy type promotion rules to the arguments.
+
Examples
--------
>>> data = range(1,5)