summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
authorRalf Gommers <ralf.gommers@gmail.com>2018-06-27 19:10:30 -0700
committerGitHub <noreply@github.com>2018-06-27 19:10:30 -0700
commit26b2a5c0b05ddd9add6b412f967a968c65f13bb7 (patch)
tree2a6d30e83ff7c980d86caef1d8c58cb48a21fd15 /numpy/lib/function_base.py
parent2804c03bdc135b70cbcc24755d450123274b4850 (diff)
parent6d601e51cdce8420b4bea383ee4a17ae8ff2969c (diff)
downloadnumpy-26b2a5c0b05ddd9add6b412f967a968c65f13bb7.tar.gz
Merge pull request #11347 from mattip/less-sphinx-warnings
DOC: Silence many sphinx warnings
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py17
1 files changed, 9 insertions, 8 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 128da22c6..26ef3e235 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -3398,9 +3398,9 @@ def _median(a, axis=None, out=None, overwrite_input=False):
def percentile(a, q, axis=None, out=None,
overwrite_input=False, interpolation='linear', keepdims=False):
"""
- Compute the qth percentile of the data along the specified axis.
+ Compute the q-th percentile of the data along the specified axis.
- Returns the qth percentile(s) of the array elements.
+ Returns the q-th percentile(s) of the array elements.
Parameters
----------
@@ -3467,7 +3467,7 @@ def percentile(a, q, axis=None, out=None,
Notes
-----
- Given a vector ``V`` of length ``N``, the ``q``-th percentile of
+ Given a vector ``V`` of length ``N``, the q-th percentile of
``V`` is the value ``q/100`` of the way from the minimum to the
maximum in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
@@ -3543,7 +3543,7 @@ def percentile(a, q, axis=None, out=None,
def quantile(a, q, axis=None, out=None,
overwrite_input=False, interpolation='linear', keepdims=False):
"""
- Compute the `q`th quantile of the data along the specified axis.
+ Compute the q-th quantile of the data along the specified axis.
..versionadded:: 1.15.0
Parameters
@@ -3569,6 +3569,7 @@ def quantile(a, q, axis=None, out=None,
This optional parameter specifies the interpolation method to
use when the desired quantile lies between two data points
``i < j``:
+
* linear: ``i + (j - i) * fraction``, where ``fraction``
is the fractional part of the index surrounded by ``i``
and ``j``.
@@ -3602,7 +3603,7 @@ def quantile(a, q, axis=None, out=None,
Notes
-----
- Given a vector ``V`` of length ``N``, the ``q``-th quantile of
+ Given a vector ``V`` of length ``N``, the q-th quantile of
``V`` is the value ``q`` of the way from the minimum to the
maximum in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
@@ -3720,7 +3721,7 @@ def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
indices = concatenate((indices, [-1]))
ap.partition(indices, axis=axis)
- # ensure axis with qth is first
+ # ensure axis with q-th is first
ap = np.moveaxis(ap, axis, 0)
axis = 0
@@ -3753,7 +3754,7 @@ def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
ap.partition(concatenate((indices_below, indices_above)), axis=axis)
- # ensure axis with qth is first
+ # ensure axis with q-th is first
ap = np.moveaxis(ap, axis, 0)
weights_below = np.moveaxis(weights_below, axis, 0)
weights_above = np.moveaxis(weights_above, axis, 0)
@@ -3767,7 +3768,7 @@ def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
x1 = take(ap, indices_below, axis=axis) * weights_below
x2 = take(ap, indices_above, axis=axis) * weights_above
- # ensure axis with qth is first
+ # ensure axis with q-th is first
x1 = np.moveaxis(x1, axis, 0)
x2 = np.moveaxis(x2, axis, 0)