diff options
author | Ralf Gommers <ralf.gommers@googlemail.com> | 2014-12-13 12:03:45 +0100 |
---|---|---|
committer | Ralf Gommers <ralf.gommers@googlemail.com> | 2014-12-13 12:03:45 +0100 |
commit | 3ef77eea0d9c2cd76bc9b89b04a32f1322f842d5 (patch) | |
tree | 346e177b206896e2209351dafe7190e615a18a04 /numpy/lib/function_base.py | |
parent | 2070ecf08a4727819b0268f761f6614a153e619c (diff) | |
parent | 1b908fc0f119f6d4137080d1db317b6b9c4e3e74 (diff) | |
download | numpy-3ef77eea0d9c2cd76bc9b89b04a32f1322f842d5.tar.gz |
Merge pull request #5368 from tacaswell/sundry_doc_changes
Cleanups in documentation formatting.
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 36ce94bad..135053e43 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -263,7 +263,7 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): normed : bool, optional If False, returns the number of samples in each bin. If True, returns the bin density ``bin_count / sample_count / bin_volume``. - weights : array_like (N,), optional + weights : (N,) array_like, optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the @@ -461,7 +461,7 @@ def average(a, axis=None, weights=None, returned=False): Returns ------- - average, [sum_of_weights] : {array_type, double} + average, [sum_of_weights] : array_type or double Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` @@ -885,9 +885,9 @@ def copy(a, order='K'): def gradient(f, *varargs, **kwargs): """ Return the gradient of an N-dimensional array. - + The gradient is computed using second order accurate central differences - in the interior and either first differences or second order accurate + in the interior and either first differences or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array. @@ -901,7 +901,7 @@ def gradient(f, *varargs, **kwargs): edge_order : {1, 2}, optional Gradient is calculated using N\ :sup:`th` order accurate differences at the boundaries. Default: 1. - + .. versionadded:: 1.9.1 Returns @@ -1147,7 +1147,7 @@ def interp(x, xp, fp, left=None, right=None, period=None): Returns ------- - y : {float, ndarray} + y : float or ndarray The interpolated values, same shape as `x`. Raises @@ -1250,7 +1250,7 @@ def angle(z, deg=0): Returns ------- - angle : {ndarray, scalar} + angle : ndarray or scalar The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. @@ -1980,7 +1980,7 @@ def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): observations (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. - ddof : {None, int}, optional + ddof : int, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by |