summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
authorRalf Gommers <ralf.gommers@googlemail.com>2014-12-13 12:03:45 +0100
committerRalf Gommers <ralf.gommers@googlemail.com>2014-12-13 12:03:45 +0100
commit3ef77eea0d9c2cd76bc9b89b04a32f1322f842d5 (patch)
tree346e177b206896e2209351dafe7190e615a18a04 /numpy/lib/function_base.py
parent2070ecf08a4727819b0268f761f6614a153e619c (diff)
parent1b908fc0f119f6d4137080d1db317b6b9c4e3e74 (diff)
downloadnumpy-3ef77eea0d9c2cd76bc9b89b04a32f1322f842d5.tar.gz
Merge pull request #5368 from tacaswell/sundry_doc_changes
Cleanups in documentation formatting.
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 36ce94bad..135053e43 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -263,7 +263,7 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None):
normed : bool, optional
If False, returns the number of samples in each bin. If True,
returns the bin density ``bin_count / sample_count / bin_volume``.
- weights : array_like (N,), optional
+ weights : (N,) array_like, optional
An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
Weights are normalized to 1 if normed is True. If normed is False,
the values of the returned histogram are equal to the sum of the
@@ -461,7 +461,7 @@ def average(a, axis=None, weights=None, returned=False):
Returns
-------
- average, [sum_of_weights] : {array_type, double}
+ average, [sum_of_weights] : array_type or double
Return the average along the specified axis. When returned is `True`,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is `Float`
@@ -885,9 +885,9 @@ def copy(a, order='K'):
def gradient(f, *varargs, **kwargs):
"""
Return the gradient of an N-dimensional array.
-
+
The gradient is computed using second order accurate central differences
- in the interior and either first differences or second order accurate
+ in the interior and either first differences or second order accurate
one-sides (forward or backwards) differences at the boundaries. The
returned gradient hence has the same shape as the input array.
@@ -901,7 +901,7 @@ def gradient(f, *varargs, **kwargs):
edge_order : {1, 2}, optional
Gradient is calculated using N\ :sup:`th` order accurate differences
at the boundaries. Default: 1.
-
+
.. versionadded:: 1.9.1
Returns
@@ -1147,7 +1147,7 @@ def interp(x, xp, fp, left=None, right=None, period=None):
Returns
-------
- y : {float, ndarray}
+ y : float or ndarray
The interpolated values, same shape as `x`.
Raises
@@ -1250,7 +1250,7 @@ def angle(z, deg=0):
Returns
-------
- angle : {ndarray, scalar}
+ angle : ndarray or scalar
The counterclockwise angle from the positive real axis on
the complex plane, with dtype as numpy.float64.
@@ -1980,7 +1980,7 @@ def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None):
observations (unbiased estimate). If `bias` is 1, then
normalization is by ``N``. These values can be overridden by using
the keyword ``ddof`` in numpy versions >= 1.5.
- ddof : {None, int}, optional
+ ddof : int, optional
.. versionadded:: 1.5
If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
the number of observations; this overrides the value implied by