diff options
author | Joseph Martinot-Lagarde <contrebasse@gmail.com> | 2013-10-08 23:33:26 +0200 |
---|---|---|
committer | Sebastian Berg <sebastian@sipsolutions.net> | 2013-10-16 20:54:21 +0200 |
commit | 84c52d80b05510e10e730ce9c8c026aadb429594 (patch) | |
tree | 26ce2b0445ce81bde4ad82a2e418de0ed102a800 /numpy/lib/function_base.py | |
parent | 95a5219774818eb754053a8c45023e2e185642e7 (diff) | |
download | numpy-84c52d80b05510e10e730ce9c8c026aadb429594.tar.gz |
BUG: cov/corrcoef complex input and empty arrays
This preserves the complex (and higher precision float or
object) type of the input array, so that the complex
covariance and correlation coefficients can be calculated.
It also fixes the the behaviour of empty arrays. These will
now either result in a 0x0 result, or a NxN result filled
with NaNs.
A warning is now issued when ddof is too large and the factor
set to 0 so that in this case the result is always NaN or
infinity/negative infinity and never a negative number.
Closes gh-597 and gh-2680
Closes gh-3882 (original pull request)
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 46 |
1 files changed, 24 insertions, 22 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index ae3d3d84c..a70f74f60 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -23,7 +23,7 @@ from numpy.core.numeric import ( newaxis, intp, integer, isscalar ) from numpy.core.umath import ( - pi, multiply, add, arctan2, frompyfunc, isnan, cos, less_equal, sqrt, sin, + pi, multiply, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin, mod, exp, log10 ) from numpy.core.fromnumeric import ( @@ -350,8 +350,8 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): raise ValueError( - "Found bin edge of size <= 0. Did you specify `bins` with" - "non-monotonic sequence?") + "Found bin edge of size <= 0. Did you specify `bins` with" + "non-monotonic sequence?") nbin = asarray(nbin) @@ -1809,36 +1809,40 @@ def cov(m, y=None, rowvar=1, bias=0, ddof=None): raise ValueError( "ddof must be integer") - X = array(m, ndmin=2, dtype=float) - if X.size == 0: - # handle empty arrays - return np.array(m) + # Handles complex arrays too + if y is None: + dtype = np.result_type(m, np.float64) + else: + dtype = np.result_type(m, y, np.float64) + X = array(m, ndmin=2, dtype=dtype) + if X.shape[0] == 1: rowvar = 1 if rowvar: + N = X.shape[1] axis = 0 tup = (slice(None), newaxis) else: + N = X.shape[0] axis = 1 tup = (newaxis, slice(None)) - if y is not None: - y = array(y, copy=False, ndmin=2, dtype=float) - X = concatenate((X, y), axis) - - X -= X.mean(axis=1-axis)[tup] - if rowvar: - N = X.shape[1] - else: - N = X.shape[0] - + # check ddof if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 fact = float(N - ddof) + if fact <= 0: + warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning) + fact = 0.0 + if y is not None: + y = array(y, copy=False, ndmin=2, dtype=dtype) + X = concatenate((X, y), axis) + + X -= X.mean(axis=1-axis)[tup] if not rowvar: return (dot(X.T, X.conj()) / fact).squeeze() else: @@ -1893,14 +1897,12 @@ def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): """ c = cov(x, y, rowvar, bias, ddof) - if c.size == 0: - # handle empty arrays - return c try: d = diag(c) except ValueError: # scalar covariance - return 1 - return c/sqrt(multiply.outer(d, d)) + # nan if incorrect value (nan, inf, 0), 1 otherwise + return c / c + return c / sqrt(multiply.outer(d, d)) def blackman(M): |