diff options
author | Jonathan Helmus <jjhelmus@gmail.com> | 2013-09-13 16:57:17 -0500 |
---|---|---|
committer | Jonathan Helmus <jjhelmus@gmail.com> | 2013-09-13 17:03:37 -0500 |
commit | a7fc781d286ed8c7650e3a153f8762ce8a536da0 (patch) | |
tree | 8e9073f3abaaf1643c53767becb0f083d9af6994 /numpy/lib/function_base.py | |
parent | 4a084a0d77bbb7ade065e75d3602fd8b47369d76 (diff) | |
download | numpy-a7fc781d286ed8c7650e3a153f8762ce8a536da0.tar.gz |
DOC: changes to scoreatpercentile docstring, doc test now passes
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 38 |
1 files changed, 20 insertions, 18 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 48a86dff0..1f6484959 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -2800,10 +2800,11 @@ def percentile(a, q, interpolation='linear', axis=None, out=None, If True, then allow use of memory of input array `a` for calculations. The input array will be modified by the call to percentile. This will save memory when you do not need to preserve - the contents of the input array. Treat the input as undefined, - but it will probably be fully or partially sorted. - Default is False. Note that, if `overwrite_input` is True and the - input is not already an array, an error will be raised. + the contents of the input array. In this case you should not make + any assumptions about the content of the passed in array `a` after + this function completes -- treat it as undefined. Default is False. + Note that, if `overwrite_input` is True and the input is not + already an array, an error will be raised. Returns ------- @@ -2821,40 +2822,41 @@ def percentile(a, q, interpolation='linear', axis=None, out=None, Notes ----- Given a vector V of length N, the qth percentile of V is the qth ranked - value in a sorted copy of V. A weighted average of the two nearest - neighbors is used if the normalized ranking does not match q exactly. - The same as the median if ``q=50``, the same as the minimum if ``q=0`` - and the same as the maximum if ``q=100``. + value in a sorted copy of V. The values and distances of the two nearest + neighbors as well as the `interpolation` parameter will determine the + percentile if the normalized ranking does not match q exactly. This + function is the same as the median if ``q=50``, the same as the minimum + if ``q=0``and the same as the maximum if ``q=100``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a - array([[10, 7, 4], - [ 3, 2, 1]]) + array([[10, 7, 4], + [ 3, 2, 1]]) >>> np.percentile(a, 50) - array([3.5]) + array([ 3.5]) >>> np.percentile(a, 50, axis=0) - array([ 6.5, 4.5, 2.5]) + array([[ 6.5, 4.5, 2.5]]) >>> np.percentile(a, 50, axis=1) array([[ 7.], - [2.]]) + [ 2.]]) >>> m = np.percentile(a, 50, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 50, axis=0, out=m) - array([ 6.5, 4.5, 2.5]) + array([[ 6.5, 4.5, 2.5]]) >>> m - array([ 6.5, 4.5, 2.5]) + array([[ 6.5, 4.5, 2.5]]) >>> b = a.copy() >>> np.percentile(b, 50, axis=1, overwrite_input=True) - array([[ 7., - [2.]]) + array([[ 7.], + [ 2.]]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.percentile(b, 50, axis=None, overwrite_input=True) - array([3.5]) + array([ 3.5]) """ a = asarray(a) |