summaryrefslogtreecommitdiff
path: root/numpy/lib/function_base.py
diff options
context:
space:
mode:
authorAllan Haldane <allan.haldane@gmail.com>2016-05-11 00:10:58 -0400
committerAllan Haldane <allan.haldane@gmail.com>2016-05-11 00:15:34 -0400
commita9465db4c70f9cd9c3fb9010229aadc7ec5fdc9c (patch)
tree9492b468c8a4809eebba0e877f763cda2d02c9d4 /numpy/lib/function_base.py
parent3c394f7f8d09f08aaa068e617f79d542c17fd771 (diff)
downloadnumpy-a9465db4c70f9cd9c3fb9010229aadc7ec5fdc9c.tar.gz
BUG: distance arg of np.gradient must be scalar, fix docstring
Fixups to docstring, and disallow non-scalars as the distance args to np.gradient. Fixes #7548, fixes #6847
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r--numpy/lib/function_base.py12
1 files changed, 7 insertions, 5 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index b119f667a..e858ad1c3 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -1410,9 +1410,10 @@ def gradient(f, *varargs, **kwargs):
Returns
-------
- gradient : list of ndarray
- Each element of `list` has the same shape as `f` giving the derivative
- of `f` with respect to each dimension.
+ gradient : ndarray or list of ndarray
+ A set of ndarrays (or a single ndarray if there is only one dimension)
+ correposnding to the derivatives of f with respect to each dimension.
+ Each derivative has the same shape as f.
Examples
--------
@@ -1432,9 +1433,8 @@ def gradient(f, *varargs, **kwargs):
[ 1. , 1. , 1. ]])]
>>> x = np.array([0, 1, 2, 3, 4])
- >>> dx = np.gradient(x)
>>> y = x**2
- >>> np.gradient(y, dx, edge_order=2)
+ >>> np.gradient(y, edge_order=2)
array([-0., 2., 4., 6., 8.])
The axis keyword can be used to specify a subset of axes of which the gradient is calculated
@@ -1472,6 +1472,8 @@ def gradient(f, *varargs, **kwargs):
else:
raise SyntaxError(
"invalid number of arguments")
+ if any([not np.isscalar(dxi) for dxi in dx]):
+ raise ValueError("distances must be scalars")
edge_order = kwargs.pop('edge_order', 1)
if kwargs: