diff options
author | mattip <matti.picus@gmail.com> | 2018-04-17 13:46:36 +0300 |
---|---|---|
committer | mattip <matti.picus@gmail.com> | 2018-04-17 16:54:10 +0300 |
commit | df8e83538461c29bc12c44198574bde8ffefcad7 (patch) | |
tree | d16f3b97dfa068fce3f081bdcd6a7c94240bb426 /numpy/lib/function_base.py | |
parent | 8323be1bc44c2811fc36f5b99c1a30ebcee8edbd (diff) | |
download | numpy-df8e83538461c29bc12c44198574bde8ffefcad7.tar.gz |
DOC: clear up warnings, fix matplotlib plot
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 29 |
1 files changed, 16 insertions, 13 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 8440be52e..0e517ee8f 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -3400,17 +3400,19 @@ def percentile(a, q, axis=None, out=None, If True, then allow the input array `a` to be modified by intermediate calculations, to save memory. In this case, the contents of the input `a` after this function completes is undefined. + interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points ``i < j``: - * linear: ``i + (j - i) * fraction``, where ``fraction`` - is the fractional part of the index surrounded by ``i`` - and ``j``. - * lower: ``i``. - * higher: ``j``. - * nearest: ``i`` or ``j``, whichever is nearest. - * midpoint: ``(i + j) / 2``. + + * 'linear': ``i + (j - i) * fraction``, where ``fraction`` + is the fractional part of the index surrounded by ``i`` + and ``j``. + * 'lower': ``i``. + * 'higher': ``j``. + * 'nearest': ``i`` or ``j``, whichever is nearest. + * 'midpoint': ``(i + j) / 2``. .. versionadded:: 1.9.0 keepdims : bool, optional @@ -3479,18 +3481,19 @@ def percentile(a, q, axis=None, out=None, The different types of interpolation can be visualized graphically: - ..plot:: + .. plot:: + import matplotlib.pyplot as plt a = np.arange(4) p = np.linspace(0, 100, 6001) ax = plt.gca() lines = [ - ('linear', None) - ('higher', '--') - ('lower', '--') - ('nearest', '-.') - ('midpoint', '-.') + ('linear', None), + ('higher', '--'), + ('lower', '--'), + ('nearest', '-.'), + ('midpoint', '-.'), ] for interpolation, style in lines: ax.plot( |