diff options
author | Uddeshya Singh <singhuddeshyaofficial@gmail.com> | 2018-06-16 12:36:43 +0530 |
---|---|---|
committer | mattip <matti.picus@gmail.com> | 2018-06-28 10:25:01 -0700 |
commit | e47fd774235ca25b5f1a20884cc9caea9fba81bb (patch) | |
tree | 20c3b445dd46a66770fd9e7b1562368b854b6787 /numpy/lib/function_base.py | |
parent | a9b01a2d24aa3aa5c523df6b97467db1c92607d4 (diff) | |
download | numpy-e47fd774235ca25b5f1a20884cc9caea9fba81bb.tar.gz |
DOC: update return type description for average
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 19 |
1 files changed, 13 insertions, 6 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 26ef3e235..48b2df3b8 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -307,10 +307,12 @@ def average(a, axis=None, weights=None, returned=False): average, [sum_of_weights] : array_type or double Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum - of the weights as the second element. The return type is `Float` - if `a` is of integer type, otherwise it is of the same type as `a`. - `sum_of_weights` is of the same type as `average`. - + of the weights as the second element.`sum_of_weights` is of the + same type as `average`. The result type is the type of lowest precision + capable of representing values of both `a` and `weights` or 'float64' + if that type would be integral. Otherwise, if `a` is non integral, + result will be a `dtype` which is capable of representing both + `a.dtype` and `wgt.dtype` Raises ------ ZeroDivisionError @@ -326,7 +328,8 @@ def average(a, axis=None, weights=None, returned=False): ma.average : average for masked arrays -- useful if your data contains "missing" values - + numpy.result_type : Returns the type that results from applying the + NumPy type promotion rules to the arguments. Examples -------- >>> data = range(1,5) @@ -348,7 +351,11 @@ def average(a, axis=None, weights=None, returned=False): Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. - + >>> a = np.ones(5, dtype=np.float128) + >>> w = np.ones(5, dtype=np.complex64) + >>> avg = np.average(a, weights=w) + >>> print(avg.dtype) + complex256 """ a = np.asanyarray(a) |