diff options
author | Travis Oliphant <oliphant@enthought.com> | 2006-01-04 19:00:27 +0000 |
---|---|---|
committer | Travis Oliphant <oliphant@enthought.com> | 2006-01-04 19:00:27 +0000 |
commit | e706c7d92c4ee41e8e995fb3838bd0931b57efb5 (patch) | |
tree | 015a057d49422774e49ed211a37c14105d03a713 /numpy/lib/function_base.py | |
parent | c14d4fe25cb5cd482369734dd487ac8f376851c9 (diff) | |
download | numpy-e706c7d92c4ee41e8e995fb3838bd0931b57efb5.tar.gz |
Changed all references to scipy to numpy
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 60e4b4be0..b7c8c04be 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -479,9 +479,9 @@ def trim_zeros(filt, trim='fb'): """ Trim the leading and trailing zeros from a 1D array. Example: - >>> import scipy + >>> import numpy >>> a = array((0, 0, 0, 1, 2, 3, 2, 1, 0)) - >>> scipy.trim_zeros(a) + >>> numpy.trim_zeros(a) array([1, 2, 3, 2, 1]) """ first = 0 @@ -583,10 +583,10 @@ class vectorize(object): Description: Define a vectorized function which takes nested sequence - objects or scipy arrays as inputs and returns a - scipy array as output, evaluating the function over successive + objects or numpy arrays as inputs and returns a + numpy array as output, evaluating the function over successive tuples of the input arrays like the python map function except it uses - the broadcasting rules of scipy. + the broadcasting rules of numpy. Input: @@ -768,10 +768,10 @@ def hamming(M): def kaiser(M,beta): """kaiser(M, beta) returns a Kaiser window of length M with shape parameter - beta. It depends on scipy.special (in full scipy) for the modified bessel + beta. It depends on numpy.special (in full numpy) for the modified bessel function i0. """ - from scipy.special import i0 + from numpy.special import i0 n = arange(0,M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(beta) |