diff options
author | Yaron de Leeuw <jarondl@server.fake> | 2013-09-24 09:49:06 +0300 |
---|---|---|
committer | Yaron de Leeuw <jarondl@server.fake> | 2013-09-24 09:49:06 +0300 |
commit | ec50fb1b7683c44d065914b946d250dbe01aae9f (patch) | |
tree | 83623ca08473afcd5b1ead6cc2f94fa268fac753 /numpy/lib/function_base.py | |
parent | a38fee98467444bdf38b2a24c20466c880380341 (diff) | |
download | numpy-ec50fb1b7683c44d065914b946d250dbe01aae9f.tar.gz |
STY: error and warning formatting on 'function_base.py'
Diffstat (limited to 'numpy/lib/function_base.py')
-rw-r--r-- | numpy/lib/function_base.py | 43 |
1 files changed, 25 insertions, 18 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py index 71d382fe7..fe41a996f 100644 --- a/numpy/lib/function_base.py +++ b/numpy/lib/function_base.py @@ -339,8 +339,9 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): for i in arange(D): if isscalar(bins[i]): if bins[i] < 1: - raise ValueError("Element at index %s in `bins` should be " - "a positive integer." % i) + raise ValueError( + "Element at index %s in `bins` should be a positive " + "integer." % i) nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1) else: @@ -348,9 +349,9 @@ def histogramdd(sample, bins=10, range=None, normed=False, weights=None): nbin[i] = len(edges[i]) + 1 # +1 for outlier bins dedges[i] = diff(edges[i]) if np.any(np.asarray(dedges[i]) <= 0): - raise ValueError(""" - Found bin edge of size <= 0. Did you specify `bins` with - non-monotonic sequence?""") + raise ValueError( + "Found bin edge of size <= 0. Did you specify `bins` with" + "non-monotonic sequence?") nbin = asarray(nbin) @@ -700,7 +701,8 @@ def piecewise(x, condlist, funclist, *args, **kw): condlist.append(~totlist) n += 1 if (n != n2): - raise ValueError("function list and condition list must be the same") + raise ValueError( + "function list and condition list must be the same") zerod = False # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with @@ -771,8 +773,8 @@ def select(condlist, choicelist, default=0): n = len(condlist) n2 = len(choicelist) if n2 != n: - raise ValueError("list of cases must be same length as list of " - "conditions") + raise ValueError( + "list of cases must be same length as list of conditions") choicelist = [default] + choicelist S = 0 pfac = 1 @@ -1600,11 +1602,13 @@ class vectorize(object): self.otypes = otypes for char in self.otypes: if char not in typecodes['All']: - raise ValueError("Invalid otype specified: %s" % (char,)) + raise ValueError( + "Invalid otype specified: %s" % (char,)) elif iterable(otypes): self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) else: - raise ValueError("Invalid otype specification") + raise ValueError( + "Invalid otype specification") # Excluded variable support if excluded is None: @@ -2938,8 +2942,9 @@ def percentile(a, q, interpolation='linear', axis=None, out=None, elif interpolation == 'linear': pass # keep index as fraction and interpolate else: - raise ValueError("interpolation can only be 'linear', 'lower' " - "'higher', 'midpoint', or 'nearest'") + raise ValueError( + "interpolation can only be 'linear', 'lower' 'higher', " + "'midpoint', or 'nearest'") if indices.dtype == intp: # take the points along axis ap.partition(indices, axis=axis) @@ -3182,8 +3187,9 @@ def meshgrid(*xi, **kwargs): """ if len(xi) < 2: - raise ValueError('meshgrid() takes 2 or more arguments' - ' (%d given)' % int(len(xi) > 0)) + raise ValueError( + 'meshgrid() takes 2 or more arguments ' + '(%d given)' % int(len(xi) > 0)) args = np.atleast_1d(*xi) ndim = len(args) @@ -3192,7 +3198,8 @@ def meshgrid(*xi, **kwargs): sparse = kwargs.get('sparse', False) indexing = kwargs.get('indexing', 'xy') if not indexing in ['xy', 'ij']: - raise ValueError("Valid values for `indexing` are 'xy' and 'ij'.") + raise ValueError( + "Valid values for `indexing` are 'xy' and 'ij'.") s0 = (1,) * ndim output = [x.reshape(s0[:i] + (-1,) + s0[i + 1::]) @@ -3290,9 +3297,9 @@ def delete(arr, obj, axis=None): ndim = arr.ndim axis = ndim - 1 if ndim == 0: - warnings.warn("in the future the special handling of scalars " - "will be removed from delete and raise an error", - DeprecationWarning) + warnings.warn( + "in the future the special handling of scalars will be removed " + "from delete and raise an error", DeprecationWarning) if wrap: return wrap(arr) else: |