summaryrefslogtreecommitdiff
path: root/numpy/lib/nanfunctions.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2021-05-22 11:53:39 -0600
committerGitHub <noreply@github.com>2021-05-22 11:53:39 -0600
commitd691f18e8ef8fd76d3ee257563d843f9ad5c7a71 (patch)
tree4917130d28579bb9f91b632d95c3d0d013f795cc /numpy/lib/nanfunctions.py
parentef6595517f451edc5c5710f048d1eaf6c82f4022 (diff)
parentae9314eff5d539122bf87800a1bc50a9f99762a8 (diff)
downloadnumpy-d691f18e8ef8fd76d3ee257563d843f9ad5c7a71.tar.gz
Merge pull request #19066 from BvB93/nanmedian
BUG: Fixed an issue wherein `nanmedian` could return an array with the wrong dtype
Diffstat (limited to 'numpy/lib/nanfunctions.py')
-rw-r--r--numpy/lib/nanfunctions.py20
1 files changed, 13 insertions, 7 deletions
diff --git a/numpy/lib/nanfunctions.py b/numpy/lib/nanfunctions.py
index a02ad779f..2c2c3435b 100644
--- a/numpy/lib/nanfunctions.py
+++ b/numpy/lib/nanfunctions.py
@@ -962,12 +962,16 @@ def _nanmedian1d(arr1d, overwrite_input=False):
Private function for rank 1 arrays. Compute the median ignoring NaNs.
See nanmedian for parameter usage
"""
- arr1d, overwrite_input = _remove_nan_1d(arr1d,
- overwrite_input=overwrite_input)
- if arr1d.size == 0:
- return np.nan
+ arr1d_parsed, overwrite_input = _remove_nan_1d(
+ arr1d, overwrite_input=overwrite_input,
+ )
- return np.median(arr1d, overwrite_input=overwrite_input)
+ if arr1d_parsed.size == 0:
+ # Ensure that a nan-esque scalar of the appropiate type (and unit)
+ # is returned for `timedelta64` and `complexfloating`
+ return arr1d[-1]
+
+ return np.median(arr1d_parsed, overwrite_input=overwrite_input)
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
@@ -1008,10 +1012,12 @@ def _nanmedian_small(a, axis=None, out=None, overwrite_input=False):
for i in range(np.count_nonzero(m.mask.ravel())):
warnings.warn("All-NaN slice encountered", RuntimeWarning,
stacklevel=4)
+
+ fill_value = np.timedelta64("NaT") if m.dtype.kind == "m" else np.nan
if out is not None:
- out[...] = m.filled(np.nan)
+ out[...] = m.filled(fill_value)
return out
- return m.filled(np.nan)
+ return m.filled(fill_value)
def _nanmedian_dispatcher(