summaryrefslogtreecommitdiff
path: root/numpy/lib/npyio.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2013-04-14 07:41:43 -0700
committerCharles Harris <charlesr.harris@gmail.com>2013-04-14 07:41:43 -0700
commit3f2c789ffd0d2e05596b15ea6cd644262f96200e (patch)
tree3ada9d38eaf9f5de1cd8e2529e73d163cd19d112 /numpy/lib/npyio.py
parent61c5ac6758d05da6cf49b7247eca850d9db83a7a (diff)
parent0dfe67afd1ee9e4c905bf119673f6e634221f21b (diff)
downloadnumpy-3f2c789ffd0d2e05596b15ea6cd644262f96200e.tar.gz
Merge pull request #3244 from charris/2to3-apply-zip-fixer
2to3: Apply zip fixer.
Diffstat (limited to 'numpy/lib/npyio.py')
-rw-r--r--numpy/lib/npyio.py12
1 files changed, 6 insertions, 6 deletions
diff --git a/numpy/lib/npyio.py b/numpy/lib/npyio.py
index 4e8907c12..733868780 100644
--- a/numpy/lib/npyio.py
+++ b/numpy/lib/npyio.py
@@ -1664,11 +1664,11 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
# rows[i] = tuple([convert(val)
# for (convert, val) in zip(conversionfuncs, vals)])
if loose:
- rows = zip(*[[converter._loose_call(_r) for _r in map(itemgetter(i), rows)]
- for (i, converter) in enumerate(converters)])
+ rows = list(zip(*[[converter._loose_call(_r) for _r in map(itemgetter(i), rows)]
+ for (i, converter) in enumerate(converters)]))
else:
- rows = zip(*[[converter._strict_call(_r) for _r in map(itemgetter(i), rows)]
- for (i, converter) in enumerate(converters)])
+ rows = list(zip(*[[converter._strict_call(_r) for _r in map(itemgetter(i), rows)]
+ for (i, converter) in enumerate(converters)]))
# Reset the dtype
data = rows
if dtype is None:
@@ -1693,8 +1693,8 @@ def genfromtxt(fname, dtype=float, comments='#', delimiter=None,
mdtype = [(defaultfmt % i, np.bool)
for (i, dt) in enumerate(column_types)]
else:
- ddtype = zip(names, column_types)
- mdtype = zip(names, [np.bool] * len(column_types))
+ ddtype = list(zip(names, column_types))
+ mdtype = list(zip(names, [np.bool] * len(column_types)))
output = np.array(data, dtype=ddtype)
if usemask:
outputmask = np.array(masks, dtype=mdtype)