diff options
author | scoder <stefan_ml@behnel.de> | 2023-05-04 09:29:53 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-04 09:29:53 +0200 |
commit | 442c8f48d3146ec32c7d5387310e171276cf10ac (patch) | |
tree | d8911d1a64e384b7955d3fc09a07edd218a9f1ee /numpy/lib/shape_base.py | |
parent | 3e4a6cba2da27bbe2a6e12c163238e503c9f6a07 (diff) | |
parent | 9163e933df91b516b6f0c7a9ba8ad1750e642f37 (diff) | |
download | numpy-442c8f48d3146ec32c7d5387310e171276cf10ac.tar.gz |
Merge branch 'main' into cython3_noexcept
Diffstat (limited to 'numpy/lib/shape_base.py')
-rw-r--r-- | numpy/lib/shape_base.py | 122 |
1 files changed, 68 insertions, 54 deletions
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py index bc6718eca..5d8a41bfe 100644 --- a/numpy/lib/shape_base.py +++ b/numpy/lib/shape_base.py @@ -1,9 +1,7 @@ import functools import numpy.core.numeric as _nx -from numpy.core.numeric import ( - asarray, zeros, outer, concatenate, array, asanyarray - ) +from numpy.core.numeric import asarray, zeros, array, asanyarray from numpy.core.fromnumeric import reshape, transpose from numpy.core.multiarray import normalize_axis_index from numpy.core import overrides @@ -69,13 +67,13 @@ def take_along_axis(arr, indices, axis): Parameters ---------- - arr: ndarray (Ni..., M, Nk...) + arr : ndarray (Ni..., M, Nk...) Source array - indices: ndarray (Ni..., J, Nk...) + indices : ndarray (Ni..., J, Nk...) Indices to take along each 1d slice of `arr`. This must match the dimension of arr, but dimensions Ni and Nj only need to broadcast against `arr`. - axis: int + axis : int The axis to take 1d slices along. If axis is None, the input array is treated as if it had first been flattened to 1d, for consistency with `sort` and `argsort`. @@ -124,19 +122,21 @@ def take_along_axis(arr, indices, axis): >>> np.sort(a, axis=1) array([[10, 20, 30], [40, 50, 60]]) - >>> ai = np.argsort(a, axis=1); ai + >>> ai = np.argsort(a, axis=1) + >>> ai array([[0, 2, 1], [1, 2, 0]]) >>> np.take_along_axis(a, ai, axis=1) array([[10, 20, 30], [40, 50, 60]]) - The same works for max and min, if you expand the dimensions: + The same works for max and min, if you maintain the trivial dimension + with ``keepdims``: - >>> np.expand_dims(np.max(a, axis=1), axis=1) + >>> np.max(a, axis=1, keepdims=True) array([[30], [60]]) - >>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1) + >>> ai = np.argmax(a, axis=1, keepdims=True) >>> ai array([[1], [0]]) @@ -147,8 +147,8 @@ def take_along_axis(arr, indices, axis): If we want to get the max and min at the same time, we can stack the indices first - >>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1) - >>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1) + >>> ai_min = np.argmin(a, axis=1, keepdims=True) + >>> ai_max = np.argmax(a, axis=1, keepdims=True) >>> ai = np.concatenate([ai_min, ai_max], axis=1) >>> ai array([[0, 1], @@ -190,16 +190,16 @@ def put_along_axis(arr, indices, values, axis): Parameters ---------- - arr: ndarray (Ni..., M, Nk...) + arr : ndarray (Ni..., M, Nk...) Destination array. - indices: ndarray (Ni..., J, Nk...) + indices : ndarray (Ni..., J, Nk...) Indices to change along each 1d slice of `arr`. This must match the dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast against `arr`. - values: array_like (Ni..., J, Nk...) + values : array_like (Ni..., J, Nk...) values to insert at those indices. Its shape and dimension are broadcast to match that of `indices`. - axis: int + axis : int The axis to take 1d slices along. If axis is None, the destination array is treated as if a flattened 1d view had been created of it. @@ -237,7 +237,7 @@ def put_along_axis(arr, indices, values, axis): We can replace the maximum values with: - >>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1) + >>> ai = np.argmax(a, axis=1, keepdims=True) >>> ai array([[1], [0]]) @@ -372,7 +372,7 @@ def apply_along_axis(func1d, axis, arr, *args, **kwargs): # invoke the function on the first item try: ind0 = next(inds) - except StopIteration as e: + except StopIteration: raise ValueError( 'Cannot apply_along_axis when any iteration dimensions are 0' ) from None @@ -643,13 +643,9 @@ def column_stack(tup): [3, 4]]) """ - if not overrides.ARRAY_FUNCTION_ENABLED: - # raise warning if necessary - _arrays_for_stack_dispatcher(tup, stacklevel=2) - arrays = [] for v in tup: - arr = array(v, copy=False, subok=True) + arr = asanyarray(v) if arr.ndim < 2: arr = array(arr, copy=False, subok=True, ndmin=2).T arrays.append(arr) @@ -713,10 +709,6 @@ def dstack(tup): [[3, 4]]]) """ - if not overrides.ARRAY_FUNCTION_ENABLED: - # raise warning if necessary - _arrays_for_stack_dispatcher(tup, stacklevel=2) - arrs = atleast_3d(*tup) if not isinstance(arrs, list): arrs = [arrs] @@ -756,11 +748,11 @@ def array_split(ary, indices_or_sections, axis=0): -------- >>> x = np.arange(8.0) >>> np.array_split(x, 3) - [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])] + [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])] - >>> x = np.arange(7.0) - >>> np.array_split(x, 3) - [array([0., 1., 2.]), array([3., 4.]), array([5., 6.])] + >>> x = np.arange(9) + >>> np.array_split(x, 4) + [array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])] """ try: @@ -775,7 +767,7 @@ def array_split(ary, indices_or_sections, axis=0): # indices_or_sections is a scalar, not an array. Nsections = int(indices_or_sections) if Nsections <= 0: - raise ValueError('number sections must be larger than 0.') + raise ValueError('number sections must be larger than 0.') from None Neach_section, extras = divmod(Ntotal, Nsections) section_sizes = ([0] + extras * [Neach_section+1] + @@ -870,7 +862,7 @@ def split(ary, indices_or_sections, axis=0): N = ary.shape[axis] if N % sections: raise ValueError( - 'array split does not result in an equal division') + 'array split does not result in an equal division') from None return array_split(ary, indices_or_sections, axis) @@ -885,7 +877,7 @@ def hsplit(ary, indices_or_sections): Please refer to the `split` documentation. `hsplit` is equivalent to `split` with ``axis=1``, the array is always split along the second - axis regardless of the array dimension. + axis except for 1-D arrays, where it is split at ``axis=0``. See Also -------- @@ -933,6 +925,12 @@ def hsplit(ary, indices_or_sections): array([[[2., 3.]], [[6., 7.]]])] + With a 1-D array, the split is along axis 0. + + >>> x = np.array([0, 1, 2, 3, 4, 5]) + >>> np.hsplit(x, 2) + [array([0, 1, 2]), array([3, 4, 5])] + """ if _nx.ndim(ary) == 0: raise ValueError('hsplit only works on arrays of 1 or more dimensions') @@ -1035,6 +1033,7 @@ def dsplit(ary, indices_or_sections): raise ValueError('dsplit only works on arrays of 3 or more dimensions') return split(ary, indices_or_sections, 2) + def get_array_prepare(*args): """Find the wrapper for the array with the highest priority. @@ -1047,6 +1046,7 @@ def get_array_prepare(*args): return wrappers[-1][-1] return None + def get_array_wrap(*args): """Find the wrapper for the array with the highest priority. @@ -1088,8 +1088,8 @@ def kron(a, b): ----- The function assumes that the number of dimensions of `a` and `b` are the same, if necessary prepending the smallest with ones. - If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`, - the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`. + If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``, + the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``. The elements are products of elements from `a` and `b`, organized explicitly by:: @@ -1133,35 +1133,49 @@ def kron(a, b): True """ + # Working: + # 1. Equalise the shapes by prepending smaller array with 1s + # 2. Expand shapes of both the arrays by adding new axes at + # odd positions for 1st array and even positions for 2nd + # 3. Compute the product of the modified array + # 4. The inner most array elements now contain the rows of + # the Kronecker product + # 5. Reshape the result to kron's shape, which is same as + # product of shapes of the two arrays. b = asanyarray(b) a = array(a, copy=False, subok=True, ndmin=b.ndim) + is_any_mat = isinstance(a, matrix) or isinstance(b, matrix) ndb, nda = b.ndim, a.ndim + nd = max(ndb, nda) + if (nda == 0 or ndb == 0): return _nx.multiply(a, b) + as_ = a.shape bs = b.shape if not a.flags.contiguous: a = reshape(a, as_) if not b.flags.contiguous: b = reshape(b, bs) - nd = ndb - if (ndb != nda): - if (ndb > nda): - as_ = (1,)*(ndb-nda) + as_ - else: - bs = (1,)*(nda-ndb) + bs - nd = nda - result = outer(a, b).reshape(as_+bs) - axis = nd-1 - for _ in range(nd): - result = concatenate(result, axis=axis) - wrapper = get_array_prepare(a, b) - if wrapper is not None: - result = wrapper(result) - wrapper = get_array_wrap(a, b) - if wrapper is not None: - result = wrapper(result) - return result + + # Equalise the shapes by prepending smaller one with 1s + as_ = (1,)*max(0, ndb-nda) + as_ + bs = (1,)*max(0, nda-ndb) + bs + + # Insert empty dimensions + a_arr = expand_dims(a, axis=tuple(range(ndb-nda))) + b_arr = expand_dims(b, axis=tuple(range(nda-ndb))) + + # Compute the product + a_arr = expand_dims(a_arr, axis=tuple(range(1, nd*2, 2))) + b_arr = expand_dims(b_arr, axis=tuple(range(0, nd*2, 2))) + # In case of `mat`, convert result to `array` + result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat)) + + # Reshape back + result = result.reshape(_nx.multiply(as_, bs)) + + return result if not is_any_mat else matrix(result, copy=False) def _tile_dispatcher(A, reps): |