summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
authormattip <matti.picus@gmail.com>2019-01-06 13:56:47 +0200
committermattip <matti.picus@gmail.com>2019-01-06 14:05:44 +0200
commit217f13b955df24ba3314802071dd04b1262e1320 (patch)
treef0d719253aa7c7391067c094cb9a660e57af6479 /numpy/lib/tests/test_function_base.py
parent608fc9808f05abb41a44f92c63242a505accc844 (diff)
downloadnumpy-217f13b955df24ba3314802071dd04b1262e1320.tar.gz
ENH: remove "Invalid value" warnings from median, percentile
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py95
1 files changed, 26 insertions, 69 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 3d4b0e3b2..0976be114 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -2391,11 +2391,8 @@ class TestPercentile(object):
assert_equal(np.percentile(x, 100), 3.5)
assert_equal(np.percentile(x, 50), 1.75)
x[1] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(x, 0), np.nan)
- assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.percentile(x, 0), np.nan)
+ assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan)
def test_api(self):
d = np.ones(5)
@@ -2733,85 +2730,63 @@ class TestPercentile(object):
def test_nan_behavior(self):
a = np.arange(24, dtype=float)
a[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3, axis=0), np.nan)
- assert_equal(np.percentile(a, [0.3, 0.6], axis=0),
- np.array([np.nan] * 2))
- assert_(w[0].category is RuntimeWarning)
- assert_(w[1].category is RuntimeWarning)
- assert_(w[2].category is RuntimeWarning)
+ assert_equal(np.percentile(a, 0.3), np.nan)
+ assert_equal(np.percentile(a, 0.3, axis=0), np.nan)
+ assert_equal(np.percentile(a, [0.3, 0.6], axis=0),
+ np.array([np.nan] * 2))
a = np.arange(24, dtype=float).reshape(2, 3, 4)
a[1, 2, 3] = np.nan
a[1, 1, 2] = np.nan
# no axis
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.percentile(a, 0.3), np.nan)
+ assert_equal(np.percentile(a, 0.3).ndim, 0)
# axis0 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0)
b[2, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, 0), b)
+ assert_equal(np.percentile(a, 0.3, 0), b)
# axis0 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], 0)
b[:, 2, 3] = np.nan
b[:, 1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
# axis1 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1)
b[1, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, 1), b)
+ assert_equal(np.percentile(a, 0.3, 1), b)
# axis1 not zerod
b = np.percentile(
np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1)
b[:, 1, 3] = np.nan
b[:, 1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
# axis02 zerod
b = np.percentile(
np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2))
b[1] = np.nan
b[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, (0, 2)), b)
+ assert_equal(np.percentile(a, 0.3, (0, 2)), b)
# axis02 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2))
b[:, 1] = np.nan
b[:, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
# axis02 not zerod with nearest interpolation
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2), interpolation='nearest')
b[:, 1] = np.nan
b[:, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(
- a, [0.3, 0.6], (0, 2), interpolation='nearest'), b)
+ assert_equal(np.percentile(
+ a, [0.3, 0.6], (0, 2), interpolation='nearest'), b)
class TestQuantile(object):
@@ -2858,10 +2833,7 @@ class TestMedian(object):
# check array scalar result
assert_equal(np.median(a).ndim, 0)
a[1] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.median(a).ndim, 0)
def test_axis_keyword(self):
a3 = np.array([[2, 3],
@@ -2960,58 +2932,43 @@ class TestMedian(object):
def test_nan_behavior(self):
a = np.arange(24, dtype=float)
a[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a, axis=0), np.nan)
- assert_(w[0].category is RuntimeWarning)
- assert_(w[1].category is RuntimeWarning)
+ assert_equal(np.median(a), np.nan)
+ assert_equal(np.median(a, axis=0), np.nan)
a = np.arange(24, dtype=float).reshape(2, 3, 4)
a[1, 2, 3] = np.nan
a[1, 1, 2] = np.nan
# no axis
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.median(a), np.nan)
+ assert_equal(np.median(a).ndim, 0)
# axis0
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0)
b[2, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, 0), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, 0), b)
# axis1
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1)
b[1, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, 1), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, 1), b)
# axis02
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2))
b[1] = np.nan
b[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, (0, 2)), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, (0, 2)), b)
def test_empty(self):
- # empty arrays
+ # mean(empty array) emits two warnings: empty slice and divide by 0
a = np.array([], dtype=float)
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a), np.nan)
assert_(w[0].category is RuntimeWarning)
+ assert_equal(len(w), 2)
# multiple dimensions
a = np.array([], dtype=float, ndmin=3)