summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
authorJarrod Millman <millman@berkeley.edu>2008-04-20 11:49:35 +0000
committerJarrod Millman <millman@berkeley.edu>2008-04-20 11:49:35 +0000
commit8c663313de36e860bbfea0909de181d330bfdfc7 (patch)
treea7b5f3585d2b8a2d8307bfb03dd0e449fa732860 /numpy/lib/tests/test_function_base.py
parentcb7de97f089b67eaacf37ddbebcfb91c292c0ef4 (diff)
downloadnumpy-8c663313de36e860bbfea0909de181d330bfdfc7.tar.gz
ran reindent in preparation for the 1.1 release
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py52
1 files changed, 26 insertions, 26 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index d1786969d..52c8cb4d0 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -58,36 +58,36 @@ class TestAverage(NumpyTestCase):
assert_almost_equal(y5.mean(1), average(y5, 1))
y6 = matrix(rand(5,5))
- assert_array_equal(y6.mean(0), average(y6,0))
-
+ assert_array_equal(y6.mean(0), average(y6,0))
+
def check_weights(self):
y = arange(10)
w = arange(10)
assert_almost_equal(average(y, weights=w), (arange(10)**2).sum()*1./arange(10).sum())
-
+
y1 = array([[1,2,3],[4,5,6]])
w0 = [1,2]
actual = average(y1,weights=w0,axis=0)
desired = array([3.,4.,5.])
assert_almost_equal(actual, desired)
-
-
+
+
w1 = [0,0,1]
desired = array([3., 6.])
assert_almost_equal(average(y1, weights=w1, axis=1), desired)
# This should raise an error. Can we test for that ?
# assert_equal(average(y1, weights=w1), 9./2.)
-
-
+
+
# 2D Case
w2 = [[0,0,1],[0,0,2]]
desired = array([3., 6.])
assert_array_equal(average(y1, weights=w2, axis=1), desired)
-
+
assert_equal(average(y1, weights=w2), 5.)
-
-
+
+
def check_returned(self):
y = array([[1,2,3],[4,5,6]])
@@ -97,23 +97,23 @@ class TestAverage(NumpyTestCase):
avg, scl = average(y, 0, returned=True)
assert_array_equal(scl, array([2.,2.,2.]))
-
+
avg, scl = average(y, 1, returned=True)
assert_array_equal(scl, array([3.,3.]))
-
+
# With weights
w0 = [1,2]
avg, scl = average(y, weights=w0, axis=0, returned=True)
assert_array_equal(scl, array([3., 3., 3.]))
-
+
w1 = [1,2,3]
avg, scl = average(y, weights=w1, axis=1, returned=True)
assert_array_equal(scl, array([6., 6.]))
-
+
w2 = [[0,0,1],[1,2,3]]
avg, scl = average(y, weights=w2, axis=1, returned=True)
assert_array_equal(scl, array([1.,6.]))
-
+
class TestSelect(NumpyTestCase):
def _select(self,cond,values,default=0):
@@ -433,7 +433,7 @@ class TestHistogram(NumpyTestCase):
(a,b)=histogram(v)
#check if the sum of the bins equals the number of samples
assert(sum(a,axis=0)==n)
- #check that the bin counts are evenly spaced when the data is from a
+ #check that the bin counts are evenly spaced when the data is from a
# linear function
(a,b)=histogram(linspace(0,10,100))
assert(all(a==10))
@@ -443,7 +443,7 @@ class TestHistogramdd(NumpyTestCase):
x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
H, edges = histogramdd(x, (2,3,3), range = [[-1,1], [0,3], [0,3]])
- answer = asarray([[[0,1,0], [0,0,1], [1,0,0]], [[0,1,0], [0,0,1],
+ answer = asarray([[[0,1,0], [0,0,1], [1,0,0]], [[0,1,0], [0,0,1],
[0,0,1]]])
assert_array_equal(H,answer)
# Check normalization
@@ -451,12 +451,12 @@ class TestHistogramdd(NumpyTestCase):
H, edges = histogramdd(x, bins = ed, normed = True)
assert(all(H == answer/12.))
# Check that H has the correct shape.
- H, edges = histogramdd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]],
+ H, edges = histogramdd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]],
normed=True)
- answer = asarray([[[0,1,0,0], [0,0,1,0], [1,0,0,0]], [[0,1,0,0],
+ answer = asarray([[[0,1,0,0], [0,0,1,0], [1,0,0,0]], [[0,1,0,0],
[0,0,1,0], [0,0,1,0]]])
assert_array_almost_equal(H, answer/6., 4)
- # Check that a sequence of arrays is accepted and H has the correct
+ # Check that a sequence of arrays is accepted and H has the correct
# shape.
z = [squeeze(y) for y in split(x,3,axis=1)]
H, edges = histogramdd(z, bins=(4,3,2),range=[[-2,2], [0,3], [0,2]])
@@ -473,7 +473,7 @@ class TestHistogramdd(NumpyTestCase):
def check_shape_3d(self):
# All possible permutations for bins of different lengths in 3D.
- bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
+ bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
(4, 5, 6))
r = rand(10,3)
for b in bins:
@@ -482,11 +482,11 @@ class TestHistogramdd(NumpyTestCase):
def check_shape_4d(self):
# All possible permutations for bins of different lengths in 4D.
- bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
- (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
- (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
- (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
- (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
+ bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
+ (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
+ (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
+ (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
+ (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
(5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
r = rand(10,4)