summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2012-10-11 18:07:03 +0200
committerSebastian Berg <sebastian@sipsolutions.net>2013-04-11 18:52:03 +0200
commit908e06c3c465434023649b0ca522836580c5cfdc (patch)
tree98ff9a320863f4fd7d861c2c217ecd0c314ef37f /numpy/lib/tests/test_function_base.py
parent79126f1c6084c56348b71e1b91fb4b6bc9de86b2 (diff)
downloadnumpy-908e06c3c465434023649b0ca522836580c5cfdc.tar.gz
ENH: larger fixes for np.delete and np.insert functions
There were several smaller to larger problems for these two functions, that this addresses: * delete did not handle out of bound values graciously (ignoring negative ones) * both were unnecessarily slow due to use of sets * insert did not handle unsorted indices correctly Further changes: * Add FutureWarning for boolean obj, so it can be handled similar to a boolean mask with indexing. * Add FutureWarning to remove inconsistent special cases for 0-d arrays (neither insertion nor deletion along an axis make sense for a scalar) * Allow insertion of an array with more then one element along axis when obj is a sequence with a single item. (i.e. array([1])). * Reintroduce speed optimization for scalar in insert that existed in 1.6.
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py53
1 files changed, 51 insertions, 2 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 28786dc3e..b9b13a6a9 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -5,7 +5,7 @@ import numpy as np
from numpy.testing import (
run_module_suite, TestCase, assert_, assert_equal,
assert_array_equal, assert_almost_equal, assert_array_almost_equal,
- assert_raises, assert_allclose, assert_array_max_ulp
+ assert_raises, assert_allclose, assert_array_max_ulp, assert_warns
)
from numpy.random import rand
from numpy.lib import *
@@ -174,9 +174,14 @@ class TestInsert(TestCase):
assert_equal(insert(a, 3, 1), [1, 2, 3, 1])
assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3])
assert_equal(insert(a, 1,[1,2,3]), [1, 1, 2, 3, 2, 3])
- assert_equal(insert(a,[1,2,3],9),[1,9,2,9,3,9])
+ assert_equal(insert(a,[1,-1,3],9),[1,9,2,9,3,9])
+ assert_equal(insert(a,slice(-1,None,-1), 9),[9,1,9,2,9,3])
+ assert_warns(FutureWarning, insert, a, np.array([True]*4), 9)
+ #assert_equal(insert(a, np.array([True]*4), 9), [9,1,9,2,9,3,9])
+ assert_equal(insert(a,[-1,1,3], [7,8,9]),[1,8,2,7,3,9])
b = np.array([0, 1], dtype=np.float64)
assert_equal(insert(b, 0, b[0]), [0., 0., 1.])
+
def test_multidim(self):
a = [[1, 1, 1]]
r = [[2, 2, 2],
@@ -185,6 +190,17 @@ class TestInsert(TestCase):
assert_equal(insert(a, 0, 2, axis=0), r)
assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]])
+ a = np.array([[1, 1], [2, 2], [3, 3]])
+ b = np.arange(1,4).repeat(3).reshape(3,3)
+ c = np.concatenate((a[:,0:1], np.arange(1,4).repeat(3).reshape(3,3).T,
+ a[:,1:2]), axis=1)
+ assert_equal(insert(a, [1], [[1],[2],[3]], axis=1), b)
+ assert_equal(insert(a, [1], [1, 2, 3], axis=1), c)
+ # scalars behave differently, in this case exactly opposite:
+ assert_equal(insert(a, 1, [1, 2, 3], axis=1), b)
+ assert_equal(insert(a, 1, [[1],[2],[3]], axis=1), c)
+
+
class TestAmax(TestCase):
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
@@ -302,6 +318,39 @@ class TestDiff(TestCase):
assert_array_equal(diff(x, n=2, axis=0), out4)
+class TestDelete(TestCase):
+ def setUp(self):
+ self.a = np.arange(5)
+ self.nd_a = np.arange(5).repeat(2).reshape(1,5,2)
+
+ def _check_inverse_of_slicing(self, indices):
+ a_del = delete(self.a, indices)
+ assert_array_equal(setxor1d(a_del, self.a[indices,]), self.a)
+ nd_a_del = delete(self.nd_a, indices, axis=1)
+ xor = setxor1d(nd_a_del[0,:,0], self.nd_a[0,indices,0])
+ assert_array_equal(xor, self.nd_a[0,:,0])
+
+ def test_slices(self):
+ lims = [-6, -2, 0, 1, 2, 4, 5]
+ steps = [-3, -1, 1, 3]
+ for start in lims:
+ for stop in lims:
+ for step in steps:
+ s = slice(start, stop, step)
+ self._check_inverse_of_slicing(s)
+
+ def test_fancy(self):
+ self._check_inverse_of_slicing([0, -1, 2, 2])
+ a = np.array([True, False, False], dtype=bool)
+ assert_warns(FutureWarning, delete, self.a, a)
+ #self._check_inverse_of_slicing(a)
+ self._check_inverse_of_slicing(np.array([[0,1],[2,1]]))
+
+ def test_single(self):
+ self._check_inverse_of_slicing(0)
+ self._check_inverse_of_slicing(-4)
+
+
class TestGradient(TestCase):
def test_basic(self):
v = [[1, 1], [3, 4]]