diff options
author | Alessandro Pietro Bardelli <apbard@users.noreply.github.com> | 2017-01-04 00:58:44 +0100 |
---|---|---|
committer | Alessandro Pietro Bardelli <apbard@users.noreply.github.com> | 2017-02-22 10:50:53 +0100 |
commit | 9520de90837d0afaac3d1612047f4b952563b3d5 (patch) | |
tree | 623938c6d79bda2affa5e1794f8512155d2d4241 /numpy/lib/tests/test_function_base.py | |
parent | f6a07571df745f01eaccf4b05b8476da6f0b5833 (diff) | |
download | numpy-9520de90837d0afaac3d1612047f4b952563b3d5.tar.gz |
ENH: gradient support for unevenly spaced data
This somehow reverts #7618 and solves #6847, #7548 by implementing
support for unevenly spaced data. Now the behaviour is similar to
that of Matlab/Octave function. As argument it can take:
1. A single scalar to specify a sample distance for all dimensions.
2. N scalars to specify a constant sample distance for each dimension.
i.e. `dx`, `dy`, `dz`, ...
3. N arrays to specify the coordinates of the values along each
dimension of F. The length of the array must match the size of
the corresponding dimension
4. Any combination of N scalars/arrays with the meaning of 2. and 3.
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r-- | numpy/lib/tests/test_function_base.py | 205 |
1 files changed, 163 insertions, 42 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py index d914260ad..4fb0dba51 100644 --- a/numpy/lib/tests/test_function_base.py +++ b/numpy/lib/tests/test_function_base.py @@ -96,7 +96,7 @@ class TestRot90(TestCase): for k in range(1,5): assert_equal(rot90(a, k=k, axes=(2, 0)), - rot90(a_rot90_20, k=k-1, axes=(2, 0))) + rot90(a_rot90_20, k=k-1, axes=(2, 0))) class TestFlip(TestCase): @@ -168,7 +168,8 @@ class TestFlip(TestCase): def test_4d(self): a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5) for i in range(a.ndim): - assert_equal(np.flip(a, i), np.flipud(a.swapaxes(0, i)).swapaxes(i, 0)) + assert_equal(np.flip(a, i), + np.flipud(a.swapaxes(0, i)).swapaxes(i, 0)) class TestAny(TestCase): @@ -219,7 +220,7 @@ class TestCopy(TestCase): def test_order(self): # It turns out that people rely on np.copy() preserving order by # default; changing this broke scikit-learn: - # https://github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 + # github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 # noqa a = np.array([[1, 2], [3, 4]]) assert_(a.flags.c_contiguous) assert_(not a.flags.f_contiguous) @@ -555,7 +556,8 @@ class TestCumsum(TestCase): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, - np.uint32, np.float32, np.float64, np.complex64, np.complex128]: + np.uint32, np.float32, np.float64, np.complex64, + np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) @@ -726,14 +728,51 @@ class TestGradient(TestCase): assert_array_equal(gradient(x), dx) assert_array_equal(gradient(v), dx) + def test_args(self): + dx = np.cumsum(np.ones(5)) + dx_uneven = [1., 2., 5., 9., 11.] + f_2d = np.arange(25).reshape(5, 5) + + # distances must be scalars or have size equal to gradient[axis] + gradient(np.arange(5), 3.) + gradient(np.arange(5), dx) + gradient(f_2d, 1.5) # dy is set equal to dx because scalar + + gradient(f_2d, dx_uneven, dx_uneven) + # mix between even and uneven spaces and + # mix between scalar and vector + gradient(f_2d, dx, 2) + + # 2D but axis specified + gradient(f_2d, dx, axis=1) + def test_badargs(self): - # for 2D array, gradient can take 0, 1, or 2 extra args - x = np.array([[1, 1], [3, 4]]) - assert_raises(SyntaxError, gradient, x, np.array([1., 1.]), - np.array([1., 1.]), np.array([1., 1.])) + f_2d = np.arange(25).reshape(5, 5) + x = np.cumsum(np.ones(5)) + + # wrong sizes + assert_raises(ValueError, gradient, f_2d, x, np.ones(2)) + assert_raises(ValueError, gradient, f_2d, 1, np.ones(2)) + assert_raises(ValueError, gradient, f_2d, np.ones(2), np.ones(2)) + # wrong number of arguments + assert_raises(TypeError, gradient, f_2d, x) + assert_raises(TypeError, gradient, f_2d, x, axis=(0,1)) + assert_raises(TypeError, gradient, f_2d, x, x, x) + assert_raises(TypeError, gradient, f_2d, 1, 1, 1) + assert_raises(TypeError, gradient, f_2d, x, x, axis=1) + assert_raises(TypeError, gradient, f_2d, 1, 1, axis=1) - # disallow arrays as distances, see gh-6847 - assert_raises(ValueError, gradient, np.arange(5), np.ones(5)) + def test_datetime64(self): + # Make sure gradient() can handle special types like datetime64 + x = np.array( + ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', + '1910-10-12', '1910-12-12', '1912-12-12'], + dtype='datetime64[D]') + dx = np.array( + [-5, -3, 0, 31, 61, 396, 731], + dtype='timedelta64[D]') + assert_array_equal(gradient(x), dx) + assert_(dx.dtype == np.dtype('timedelta64[D]')) def test_masked(self): # Make sure that gradient supports subclasses like masked arrays @@ -750,29 +789,6 @@ class TestGradient(TestCase): np.gradient(x2, edge_order=2) assert_array_equal(x2.mask, [False, False, True, False, False]) - def test_datetime64(self): - # Make sure gradient() can handle special types like datetime64 - x = np.array( - ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', - '1910-10-12', '1910-12-12', '1912-12-12'], - dtype='datetime64[D]') - dx = np.array( - [-5, -3, 0, 31, 61, 396, 731], - dtype='timedelta64[D]') - assert_array_equal(gradient(x), dx) - assert_(dx.dtype == np.dtype('timedelta64[D]')) - - def test_timedelta64(self): - # Make sure gradient() can handle special types like timedelta64 - x = np.array( - [-5, -3, 10, 12, 61, 321, 300], - dtype='timedelta64[D]') - dx = np.array( - [2, 7, 7, 25, 154, 119, -21], - dtype='timedelta64[D]') - assert_array_equal(gradient(x), dx) - assert_(dx.dtype == np.dtype('timedelta64[D]')) - def test_second_order_accurate(self): # Testing that the relative numerical error is less that 3% for # this example problem. This corresponds to second order @@ -785,6 +801,78 @@ class TestGradient(TestCase): num_error = np.abs((np.gradient(y, dx, edge_order=2) / analytical) - 1) assert_(np.all(num_error < 0.03) == True) + # test with unevenly spaced + np.random.seed(0) + x = np.sort(np.random.random(10)) + y = 2 * x ** 3 + 4 * x ** 2 + 2 * x + analytical = 6 * x ** 2 + 8 * x + 2 + num_error = np.abs((np.gradient(y, x, edge_order=2) / analytical) - 1) + assert_(np.all(num_error < 0.03) == True) + + def test_spacing(self): + f = np.array([0, 2., 3., 4., 5., 5.]) + f = np.tile(f, (6,1)) + f.reshape(-1, 1) + x_uneven = np.array([0., 0.5, 1., 3., 5., 7.]) + x_even = np.arange(6.) + + fdx_even_ord1 = np.tile([2., 1.5, 1., 1., 0.5, 0.], (6,1)) + fdx_even_ord2 = np.tile([2.5, 1.5, 1., 1., 0.5, -0.5], (6,1)) + fdx_uneven_ord1 = np.tile([4., 3., 1.7, 0.5, 0.25, 0.], (6,1)) + fdx_uneven_ord2 = np.tile([5., 3., 1.7, 0.5, 0.25, -0.25], (6,1)) + + # evenly spaced + for edge_order, exp_res in [(1, fdx_even_ord1), (2, fdx_even_ord2)]: + res1 = gradient(f, 1., axis=(0,1), edge_order=edge_order) + res2 = gradient(f, x_even, x_even, + axis=(0,1), edge_order=edge_order) + res3 = gradient(f, x_even, x_even, + axis=None, edge_order=edge_order) + assert_array_equal(res1, res2) + assert_array_equal(res2, res3) + assert_almost_equal(res1[0], exp_res.T) + assert_almost_equal(res1[1], exp_res) + + res1 = gradient(f, 1., axis=0, edge_order=edge_order) + res2 = gradient(f, x_even, axis=0, edge_order=edge_order) + assert_(res1.shape == res2.shape) + assert_almost_equal(res2, exp_res.T) + + res1 = gradient(f, 1., axis=1, edge_order=edge_order) + res2 = gradient(f, x_even, axis=1, edge_order=edge_order) + assert_(res1.shape == res2.shape) + assert_array_equal(res2, exp_res) + + # unevenly spaced + for edge_order, exp_res in [(1, fdx_uneven_ord1), (2, fdx_uneven_ord2)]: + res1 = gradient(f, x_uneven, x_uneven, + axis=(0,1), edge_order=edge_order) + res2 = gradient(f, x_uneven, x_uneven, + axis=None, edge_order=edge_order) + assert_array_equal(res1, res2) + assert_almost_equal(res1[0], exp_res.T) + assert_almost_equal(res1[1], exp_res) + + res1 = gradient(f, x_uneven, axis=0, edge_order=edge_order) + assert_almost_equal(res1, exp_res.T) + + res1 = gradient(f, x_uneven, axis=1, edge_order=edge_order) + assert_almost_equal(res1, exp_res) + + # mixed + res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=1) + res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=1) + assert_array_equal(res1[0], res2[1]) + assert_array_equal(res1[1], res2[0]) + assert_almost_equal(res1[0], fdx_even_ord1.T) + assert_almost_equal(res1[1], fdx_uneven_ord1) + + res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=2) + res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=2) + assert_array_equal(res1[0], res2[1]) + assert_array_equal(res1[1], res2[0]) + assert_almost_equal(res1[0], fdx_even_ord2.T) + assert_almost_equal(res1[1], fdx_uneven_ord2) + def test_specific_axes(self): # Testing that gradient can work on a given axis only v = [[1, 1], [3, 4]] @@ -802,13 +890,37 @@ class TestGradient(TestCase): assert_almost_equal(gradient(x, axis=None), gradient(x)) # test vararg order - assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), [dx[1]/2.0, dx[0]/3.0]) + assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), + [dx[1]/2.0, dx[0]/3.0]) # test maximal number of varargs - assert_raises(SyntaxError, gradient, x, 1, 2, axis=1) + assert_raises(TypeError, gradient, x, 1, 2, axis=1) assert_raises(ValueError, gradient, x, axis=3) assert_raises(ValueError, gradient, x, axis=-3) assert_raises(TypeError, gradient, x, axis=[1,]) + + def test_timedelta64(self): + # Make sure gradient() can handle special types like timedelta64 + x = np.array( + [-5, -3, 10, 12, 61, 321, 300], + dtype='timedelta64[D]') + dx = np.array( + [2, 7, 7, 25, 154, 119, -21], + dtype='timedelta64[D]') + assert_array_equal(gradient(x), dx) + assert_(dx.dtype == np.dtype('timedelta64[D]')) + + def test_values(self): + # needs at least 2 points for edge_order ==1 + gradient(np.arange(2), edge_order=1) + # needs at least 3 points for edge_order ==1 + gradient(np.arange(3), edge_order=2) + + assert_raises(ValueError, gradient, np.arange(0), edge_order=1) + assert_raises(ValueError, gradient, np.arange(0), edge_order=2) + assert_raises(ValueError, gradient, np.arange(1), edge_order=1) + assert_raises(ValueError, gradient, np.arange(1), edge_order=2) + assert_raises(ValueError, gradient, np.arange(2), edge_order=2) class TestAngle(TestCase): @@ -1753,20 +1865,28 @@ class TestHistogramOptimBinNums(TestCase): completely ignored. All test values have been precomputed and the shouldn't change. """ - # some basic sanity checking, with some fixed data. Checking for the correct number of bins - basic_test = {50: {'fd': 8, 'scott': 8, 'rice': 15, 'sturges': 14, 'auto': 14}, - 500: {'fd': 15, 'scott': 16, 'rice': 32, 'sturges': 20, 'auto': 20}, - 5000: {'fd': 33, 'scott': 33, 'rice': 69, 'sturges': 27, 'auto': 33}} + # some basic sanity checking, with some fixed data. + # Checking for the correct number of bins + basic_test = { + 50: {'fd': 8, 'scott': 8, 'rice': 15, + 'sturges': 14, 'auto': 14}, + 500: {'fd': 15, 'scott': 16, 'rice': 32, + 'sturges': 20, 'auto': 20}, + 5000: {'fd': 33, 'scott': 33, 'rice': 69, + 'sturges': 27, 'auto': 33} + } for testlen, expectedResults in basic_test.items(): - # create some sort of non uniform data to test with (3 peak uniform mixture) + # create some sort of non uniform data to test with + # (3 peak uniform mixture) x1 = np.linspace(-10, -1, testlen // 5 * 2) x2 = np.linspace(1, 10, testlen // 5 * 3) x3 = np.linspace(-100, -50, testlen) x = np.hstack((x1, x2, x3)) for estimator, numbins in expectedResults.items(): a, b = np.histogram(x, estimator, range = (-20, 20)) - msg = "For the {0} estimator with datasize of {1}".format(estimator, testlen) + msg = "For the {0} estimator".format(estimator) + msg += " with datasize of {0}".format(testlen) assert_equal(len(a), numbins, err_msg=msg) def test_simple_weighted(self): @@ -1775,7 +1895,8 @@ class TestHistogramOptimBinNums(TestCase): """ estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto'] for estimator in estimator_list: - assert_raises(TypeError, histogram, [1, 2, 3], estimator, weights=[1, 2, 3]) + assert_raises(TypeError, histogram, [1, 2, 3], + estimator, weights=[1, 2, 3]) class TestHistogramdd(TestCase): |