summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
authorJarrod Millman <millman@berkeley.edu>2008-05-22 06:43:22 +0000
committerJarrod Millman <millman@berkeley.edu>2008-05-22 06:43:22 +0000
commit9525f467ce805c1aba6d590733f3bc224f9dc84e (patch)
treea97c8379930e384574dfb4fe2e2a7654b89b1a99 /numpy/lib/tests/test_function_base.py
parent0e968fdb7c04d1397ba5a28e0c7a2a6261fe916e (diff)
downloadnumpy-9525f467ce805c1aba6d590733f3bc224f9dc84e.tar.gz
fixed whitespace w/ reindent
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py36
1 files changed, 18 insertions, 18 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 469f35e58..e1a7ae67a 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -453,7 +453,7 @@ class TestHistogram(NumpyTestCase):
assert_array_equal(a, 10)
def check_normed_new(self):
- # Check that the integral of the density equals 1.
+ # Check that the integral of the density equals 1.
n = 100
v = rand(n)
a,b = histogram(v, normed=True, new=True)
@@ -466,49 +466,49 @@ class TestHistogram(NumpyTestCase):
a,b = histogram(v, bins, normed=True, new=True)
area = sum(a*diff(b))
assert_almost_equal(area, 1)
-
-
+
+
def check_outliers_new(self):
# Check that outliers are not tallied
a = arange(10)+.5
-
+
# Lower outliers
h,b = histogram(a, range=[0,9], new=True)
assert_equal(h.sum(),9)
-
+
# Upper outliers
h,b = histogram(a, range=[1,10], new=True)
assert_equal(h.sum(),9)
-
+
# Normalization
h,b = histogram(a, range=[1,9], normed=True, new=True)
assert_equal((h*diff(b)).sum(),1)
-
+
# Weights
w = arange(10)+.5
h,b = histogram(a, range=[1,9], weights=w, normed=True, new=True)
assert_equal((h*diff(b)).sum(),1)
-
+
h,b = histogram(a, bins=8, range=[1,9], weights=w, new=True)
assert_equal(h, w[1:-1])
-
-
+
+
def check_type_new(self):
# Check the type of the returned histogram
a = arange(10)+.5
h,b = histogram(a, new=True)
assert(issubdtype(h.dtype, int))
-
+
h,b = histogram(a, normed=True, new=True)
assert(issubdtype(h.dtype, float))
-
+
h,b = histogram(a, weights=ones(10, int), new=True)
assert(issubdtype(h.dtype, int))
-
+
h,b = histogram(a, weights=ones(10, float), new=True)
assert(issubdtype(h.dtype, float))
-
-
+
+
def check_weights_new(self):
v = rand(100)
w = ones(100)*5
@@ -518,19 +518,19 @@ class TestHistogram(NumpyTestCase):
nwa,nwb = histogram(v, weights=w, normed=True, new=True)
assert_array_almost_equal(a*5, wa)
assert_array_almost_equal(na, nwa)
-
+
# Check weights are properly applied.
v = linspace(0,10,10)
w = concatenate((zeros(5), ones(5)))
wa,wb = histogram(v, bins=arange(11),weights=w, new=True)
assert_array_almost_equal(wa, w)
-
+
# Check with integer weights
wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], new=True)
assert_array_equal(wa, [4,5,0,1])
wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], normed=True, new=True)
assert_array_equal(wa, array([4,5,0,1])/10./3.*4)
-
+
class TestHistogramdd(NumpyTestCase):
def check_simple(self):
x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \