summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_function_base.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2015-07-26 01:15:39 -0400
committerCharles Harris <charlesr.harris@gmail.com>2015-07-26 01:15:39 -0400
commite81b9eee676102fbd1c1c2916764e6ce71bac793 (patch)
tree1ac4671f5e300051e1027adbbbe01039b1c14ff8 /numpy/lib/tests/test_function_base.py
parent5eeb3c45fe407137771105ff863a46d623e7af84 (diff)
parent0d9dae2e89406e63679bc6a2bd65d50150a24a54 (diff)
downloadnumpy-e81b9eee676102fbd1c1c2916764e6ce71bac793.tar.gz
Merge pull request #6115 from charris/pyflakes-fix-star-imports
Pyflakes fix star imports and other style violations.
Diffstat (limited to 'numpy/lib/tests/test_function_base.py')
-rw-r--r--numpy/lib/tests/test_function_base.py377
1 files changed, 223 insertions, 154 deletions
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index e11822e8e..a82fab6a7 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -9,14 +9,22 @@ from numpy.testing import (
assert_almost_equal, assert_array_almost_equal, assert_raises,
assert_allclose, assert_array_max_ulp, assert_warns,
assert_raises_regex, dec, clear_and_catch_warnings
- )
+)
import numpy.lib.function_base as nfb
from numpy.random import rand
-from numpy.lib import *
+from numpy.lib import (
+ add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov,
+ delete, diff, digitize, extract, flipud, gradient, hamming, hanning,
+ histogram, histogramdd, i0, insert, interp, kaiser, meshgrid, msort,
+ piecewise, place, select, setxor1d, sinc, split, trapz, trim_zeros,
+ unwrap, unique, vectorize,
+)
+
from numpy.compat import long
class TestAny(TestCase):
+
def test_basic(self):
y1 = [0, 0, 1, 0]
y2 = [0, 0, 0, 0]
@@ -33,6 +41,7 @@ class TestAny(TestCase):
class TestAll(TestCase):
+
def test_basic(self):
y1 = [0, 1, 1, 0]
y2 = [0, 0, 0, 0]
@@ -50,6 +59,7 @@ class TestAll(TestCase):
class TestCopy(TestCase):
+
def test_basic(self):
a = np.array([[1, 2], [3, 4]])
a_copy = np.copy(a)
@@ -77,6 +87,7 @@ class TestCopy(TestCase):
class TestAverage(TestCase):
+
def test_basic(self):
y1 = np.array([1, 2, 3])
assert_(average(y1, axis=0) == 2.)
@@ -102,7 +113,7 @@ class TestAverage(TestCase):
y = np.arange(10)
w = np.arange(10)
actual = average(y, weights=w)
- desired = (np.arange(10) ** 2).sum()*1. / np.arange(10).sum()
+ desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum()
assert_almost_equal(actual, desired)
y1 = np.array([[1, 2, 3], [4, 5, 6]])
@@ -230,6 +241,7 @@ class TestSelect(TestCase):
class TestInsert(TestCase):
+
def test_basic(self):
a = [1, 2, 3]
assert_equal(insert(a, 0, 1), [1, 1, 2, 3])
@@ -247,7 +259,7 @@ class TestInsert(TestCase):
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', FutureWarning)
assert_equal(
- insert(a, np.array([True]*4), 9), [1, 9, 9, 9, 9, 2, 3])
+ insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3])
assert_(w[0].category is FutureWarning)
def test_multidim(self):
@@ -272,25 +284,25 @@ class TestInsert(TestCase):
a = np.arange(4).reshape(2, 2)
assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a)
- assert_equal(insert(a[:1, :], 1, a[1, :], axis=0), a)
+ assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a)
# negative axis value
a = np.arange(24).reshape((2, 3, 4))
- assert_equal(insert(a, 1, a[:, :, 3], axis=-1),
- insert(a, 1, a[:, :, 3], axis=2))
- assert_equal(insert(a, 1, a[:, 2, :], axis=-2),
- insert(a, 1, a[:, 2, :], axis=1))
+ assert_equal(insert(a, 1, a[:,:, 3], axis=-1),
+ insert(a, 1, a[:,:, 3], axis=2))
+ assert_equal(insert(a, 1, a[:, 2,:], axis=-2),
+ insert(a, 1, a[:, 2,:], axis=1))
# invalid axis value
- assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=3)
- assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=-4)
+ assert_raises(IndexError, insert, a, 1, a[:, 2,:], axis=3)
+ assert_raises(IndexError, insert, a, 1, a[:, 2,:], axis=-4)
# negative axis value
- a = np.arange(24).reshape((2,3,4))
- assert_equal(insert(a, 1, a[:,:,3], axis=-1),
- insert(a, 1, a[:,:,3], axis=2))
- assert_equal(insert(a, 1, a[:,2,:], axis=-2),
- insert(a, 1, a[:,2,:], axis=1))
+ a = np.arange(24).reshape((2, 3, 4))
+ assert_equal(insert(a, 1, a[:,:, 3], axis=-1),
+ insert(a, 1, a[:,:, 3], axis=2))
+ assert_equal(insert(a, 1, a[:, 2,:], axis=-2),
+ insert(a, 1, a[:, 2,:], axis=1))
def test_0d(self):
# This is an error in the future
@@ -330,6 +342,7 @@ class TestInsert(TestCase):
class TestAmax(TestCase):
+
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
assert_equal(np.amax(a), 10.0)
@@ -341,6 +354,7 @@ class TestAmax(TestCase):
class TestAmin(TestCase):
+
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
assert_equal(np.amin(a), -5.0)
@@ -352,6 +366,7 @@ class TestAmin(TestCase):
class TestPtp(TestCase):
+
def test_basic(self):
a = [3, 4, 5, 10, -3, -5, 6.0]
assert_equal(np.ptp(a, axis=0), 15.0)
@@ -363,6 +378,7 @@ class TestPtp(TestCase):
class TestCumsum(TestCase):
+
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
@@ -384,6 +400,7 @@ class TestCumsum(TestCase):
class TestProd(TestCase):
+
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
@@ -392,9 +409,9 @@ class TestProd(TestCase):
a = np.array(ba, ctype)
a2 = np.array(ba2, ctype)
if ctype in ['1', 'b']:
- self.assertRaises(ArithmeticError, prod, a)
- self.assertRaises(ArithmeticError, prod, a2, 1)
- self.assertRaises(ArithmeticError, prod, a)
+ self.assertRaises(ArithmeticError, np.prod, a)
+ self.assertRaises(ArithmeticError, np.prod, a2, 1)
+ self.assertRaises(ArithmeticError, np.prod, a)
else:
assert_equal(np.prod(a, axis=0), 26400)
assert_array_equal(np.prod(a2, axis=0),
@@ -404,6 +421,7 @@ class TestProd(TestCase):
class TestCumprod(TestCase):
+
def test_basic(self):
ba = [1, 2, 10, 11, 6, 5, 4]
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]]
@@ -412,9 +430,9 @@ class TestCumprod(TestCase):
a = np.array(ba, ctype)
a2 = np.array(ba2, ctype)
if ctype in ['1', 'b']:
- self.assertRaises(ArithmeticError, cumprod, a)
- self.assertRaises(ArithmeticError, cumprod, a2, 1)
- self.assertRaises(ArithmeticError, cumprod, a)
+ self.assertRaises(ArithmeticError, np.cumprod, a)
+ self.assertRaises(ArithmeticError, np.cumprod, a2, 1)
+ self.assertRaises(ArithmeticError, np.cumprod, a)
else:
assert_array_equal(np.cumprod(a, axis=-1),
np.array([1, 2, 20, 220,
@@ -430,6 +448,7 @@ class TestCumprod(TestCase):
class TestDiff(TestCase):
+
def test_basic(self):
x = [1, 4, 6, 7, 12]
out = np.array([3, 2, 1, 5])
@@ -441,10 +460,10 @@ class TestDiff(TestCase):
def test_nd(self):
x = 20 * rand(10, 20, 30)
- out1 = x[:, :, 1:] - x[:, :, :-1]
- out2 = out1[:, :, 1:] - out1[:, :, :-1]
- out3 = x[1:, :, :] - x[:-1, :, :]
- out4 = out3[1:, :, :] - out3[:-1, :, :]
+ out1 = x[:,:, 1:] - x[:,:, :-1]
+ out2 = out1[:,:, 1:] - out1[:,:, :-1]
+ out3 = x[1:,:,:] - x[:-1,:,:]
+ out4 = out3[1:,:,:] - out3[:-1,:,:]
assert_array_equal(diff(x), out1)
assert_array_equal(diff(x, n=2), out2)
assert_array_equal(diff(x, axis=0), out3)
@@ -452,6 +471,7 @@ class TestDiff(TestCase):
class TestDelete(TestCase):
+
def setUp(self):
self.a = np.arange(5)
self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2)
@@ -466,8 +486,8 @@ class TestDelete(TestCase):
indices = indices[(indices >= 0) & (indices < 5)]
assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a,
err_msg=msg)
- xor = setxor1d(nd_a_del[0, :, 0], self.nd_a[0, indices, 0])
- assert_array_equal(xor, self.nd_a[0, :, 0], err_msg=msg)
+ xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0])
+ assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg)
def test_slices(self):
lims = [-6, -2, 0, 1, 2, 4, 5]
@@ -516,6 +536,7 @@ class TestDelete(TestCase):
class TestGradient(TestCase):
+
def test_basic(self):
v = [[1, 1], [3, 4]]
x = np.array(v)
@@ -582,6 +603,7 @@ class TestGradient(TestCase):
class TestAngle(TestCase):
+
def test_basic(self):
x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2,
1, 1j, -1, -1j, 1 - 3j, -1 + 3j]
@@ -597,8 +619,12 @@ class TestAngle(TestCase):
class TestTrimZeros(TestCase):
- """ only testing for integer splits.
+
+ """
+ Only testing for integer splits.
+
"""
+
def test_basic(self):
a = np.array([0, 0, 1, 2, 3, 4, 0])
res = trim_zeros(a)
@@ -616,6 +642,7 @@ class TestTrimZeros(TestCase):
class TestExtins(TestCase):
+
def test_basic(self):
a = np.array([1, 3, 2, 1, 2, 3, 3])
b = extract(a > 1, a)
@@ -632,7 +659,7 @@ class TestExtins(TestCase):
place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9])
assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9])
assert_raises_regex(ValueError, "Cannot insert from an empty array",
- lambda: place(a, [0, 0, 0, 0, 0, 1, 0], []))
+ lambda: place(a, [0, 0, 0, 0, 0, 1, 0], []))
def test_both(self):
a = rand(10)
@@ -645,12 +672,14 @@ class TestExtins(TestCase):
class TestVectorize(TestCase):
+
def test_simple(self):
def addsubtract(a, b):
if a > b:
return a - b
else:
return a + b
+
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], [1, 3, 5, 7])
assert_array_equal(r, [1, 6, 1, 2])
@@ -661,6 +690,7 @@ class TestVectorize(TestCase):
return a - b
else:
return a + b
+
f = vectorize(addsubtract)
r = f([0, 3, 6, 9], 5)
assert_array_equal(r, [5, 8, 1, 4])
@@ -674,16 +704,16 @@ class TestVectorize(TestCase):
def test_ufunc(self):
import math
f = vectorize(math.cos)
- args = np.array([0, 0.5*np.pi, np.pi, 1.5*np.pi, 2*np.pi])
+ args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi])
r1 = f(args)
r2 = np.cos(args)
assert_array_almost_equal(r1, r2)
def test_keywords(self):
- import math
def foo(a, b=1):
return a + b
+
f = vectorize(foo)
args = np.array([1, 2, 3])
r1 = f(args)
@@ -699,16 +729,16 @@ class TestVectorize(TestCase):
# inspect the func_code.
import random
try:
- f = vectorize(random.randrange)
+ vectorize(random.randrange) # Should succeed
except:
raise AssertionError()
def test_keywords2_ticket_2100(self):
- r"""Test kwarg support: enhancement ticket 2100"""
- import math
+ # Test kwarg support: enhancement ticket 2100
def foo(a, b=1):
return a + b
+
f = vectorize(foo)
args = np.array([1, 2, 3])
r1 = f(a=args)
@@ -721,13 +751,14 @@ class TestVectorize(TestCase):
assert_array_equal(r1, r2)
def test_keywords3_ticket_2100(self):
- """Test excluded with mixed positional and kwargs: ticket 2100"""
+ # Test excluded with mixed positional and kwargs: ticket 2100
def mypolyval(x, p):
_p = list(p)
res = _p.pop(0)
while _p:
- res = res*x + _p.pop(0)
+ res = res * x + _p.pop(0)
return res
+
vpolyval = np.vectorize(mypolyval, excluded=['p', 1])
ans = [3, 6]
assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3]))
@@ -735,49 +766,54 @@ class TestVectorize(TestCase):
assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3]))
def test_keywords4_ticket_2100(self):
- """Test vectorizing function with no positional args."""
+ # Test vectorizing function with no positional args.
@vectorize
def f(**kw):
res = 1.0
for _k in kw:
res *= kw[_k]
return res
+
assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8])
def test_keywords5_ticket_2100(self):
- """Test vectorizing function with no kwargs args."""
+ # Test vectorizing function with no kwargs args.
@vectorize
def f(*v):
return np.prod(v)
+
assert_array_equal(f([1, 2], [3, 4]), [3, 8])
def test_coverage1_ticket_2100(self):
def foo():
return 1
+
f = vectorize(foo)
assert_array_equal(f(), 1)
def test_assigning_docstring(self):
def foo(x):
return x
+
doc = "Provided documentation"
f = vectorize(foo, doc=doc)
assert_equal(f.__doc__, doc)
def test_UnboundMethod_ticket_1156(self):
- """Regression test for issue 1156"""
+ # Regression test for issue 1156
class Foo:
b = 2
def bar(self, a):
- return a**self.b
+ return a ** self.b
+
assert_array_equal(vectorize(Foo().bar)(np.arange(9)),
- np.arange(9)**2)
+ np.arange(9) ** 2)
assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)),
- np.arange(9)**2)
+ np.arange(9) ** 2)
def test_execution_order_ticket_1487(self):
- """Regression test for dependence on execution order: issue 1487"""
+ # Regression test for dependence on execution order: issue 1487
f1 = vectorize(lambda x: x)
res1a = f1(np.arange(3))
res1b = f1(np.arange(0.1, 3))
@@ -788,24 +824,23 @@ class TestVectorize(TestCase):
assert_equal(res1b, res2b)
def test_string_ticket_1892(self):
- """Test vectorization over strings: issue 1892."""
+ # Test vectorization over strings: issue 1892.
f = np.vectorize(lambda x: x)
- s = '0123456789'*10
+ s = '0123456789' * 10
assert_equal(s, f(s))
- #z = f(np.array([s,s]))
- #assert_array_equal([s,s], f(s))
def test_cache(self):
- """Ensure that vectorized func called exactly once per argument."""
+ # Ensure that vectorized func called exactly once per argument.
_calls = [0]
@vectorize
def f(x):
_calls[0] += 1
- return x**2
+ return x ** 2
+
f.cache = True
x = np.arange(5)
- assert_array_equal(f(x), x*x)
+ assert_array_equal(f(x), x * x)
assert_equal(_calls[0], len(x))
def test_otypes(self):
@@ -816,6 +851,7 @@ class TestVectorize(TestCase):
class TestDigitize(TestCase):
+
def test_forward(self):
x = np.arange(-6, 5)
bins = np.arange(-5, 5)
@@ -871,7 +907,7 @@ class TestDigitize(TestCase):
assert_raises(ValueError, digitize, x, bins)
def test_casting_error(self):
- x = [1, 2, 3+1.j]
+ x = [1, 2, 3 + 1.j]
bins = [1, 2, 3]
assert_raises(TypeError, digitize, x, bins)
x, bins = bins, x
@@ -879,48 +915,51 @@ class TestDigitize(TestCase):
class TestUnwrap(TestCase):
+
def test_simple(self):
- #check that unwrap removes jumps greather that 2*pi
+ # check that unwrap removes jumps greather that 2*pi
assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1])
- #check that unwrap maintans continuity
+ # check that unwrap maintans continuity
assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi))
class TestFilterwindows(TestCase):
+
def test_hanning(self):
- #check symmetry
+ # check symmetry
w = hanning(10)
assert_array_almost_equal(w, flipud(w), 7)
- #check known value
+ # check known value
assert_almost_equal(np.sum(w, axis=0), 4.500, 4)
def test_hamming(self):
- #check symmetry
+ # check symmetry
w = hamming(10)
assert_array_almost_equal(w, flipud(w), 7)
- #check known value
+ # check known value
assert_almost_equal(np.sum(w, axis=0), 4.9400, 4)
def test_bartlett(self):
- #check symmetry
+ # check symmetry
w = bartlett(10)
assert_array_almost_equal(w, flipud(w), 7)
- #check known value
+ # check known value
assert_almost_equal(np.sum(w, axis=0), 4.4444, 4)
def test_blackman(self):
- #check symmetry
+ # check symmetry
w = blackman(10)
assert_array_almost_equal(w, flipud(w), 7)
- #check known value
+ # check known value
assert_almost_equal(np.sum(w, axis=0), 3.7800, 4)
class TestTrapz(TestCase):
+
def test_simple(self):
x = np.arange(-10, 10, .1)
- r = trapz(np.exp(-.5*x**2) / np.sqrt(2*np.pi), dx=0.1)
- #check integral of normal equals 1
+ r = trapz(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1)
+ # check integral of normal equals 1
assert_almost_equal(r, 1, 7)
def test_ndim(self):
@@ -938,18 +977,18 @@ class TestTrapz(TestCase):
wz[0] /= 2
wz[-1] /= 2
- q = x[:, None, None] + y[None, :, None] + z[None, None, :]
+ q = x[:, None, None] + y[None,:, None] + z[None, None,:]
qx = (q * wx[:, None, None]).sum(axis=0)
- qy = (q * wy[None, :, None]).sum(axis=1)
- qz = (q * wz[None, None, :]).sum(axis=2)
+ qy = (q * wy[None,:, None]).sum(axis=1)
+ qz = (q * wz[None, None,:]).sum(axis=2)
# n-d `x`
r = trapz(q, x=x[:, None, None], axis=0)
assert_almost_equal(r, qx)
- r = trapz(q, x=y[None, :, None], axis=1)
+ r = trapz(q, x=y[None,:, None], axis=1)
assert_almost_equal(r, qy)
- r = trapz(q, x=z[None, None, :], axis=2)
+ r = trapz(q, x=z[None, None,:], axis=2)
assert_almost_equal(r, qz)
# 1-d `x`
@@ -961,8 +1000,8 @@ class TestTrapz(TestCase):
assert_almost_equal(r, qz)
def test_masked(self):
- #Testing that masked arrays behave as if the function is 0 where
- #masked
+ # Testing that masked arrays behave as if the function is 0 where
+ # masked
x = np.arange(5)
y = x * x
mask = x == 2
@@ -977,7 +1016,7 @@ class TestTrapz(TestCase):
assert_almost_equal(trapz(y, xm), r)
def test_matrix(self):
- #Test to make sure matrices give the same answer as ndarrays
+ # Test to make sure matrices give the same answer as ndarrays
x = np.linspace(0, 5)
y = x * x
r = trapz(y, x)
@@ -988,10 +1027,11 @@ class TestTrapz(TestCase):
class TestSinc(TestCase):
+
def test_simple(self):
assert_(sinc(0) == 1)
w = sinc(np.linspace(-1, 1, 100))
- #check symmetry
+ # check symmetry
assert_array_almost_equal(w, flipud(w), 7)
def test_array_like(self):
@@ -1004,6 +1044,7 @@ class TestSinc(TestCase):
class TestHistogram(TestCase):
+
def setUp(self):
pass
@@ -1014,10 +1055,10 @@ class TestHistogram(TestCase):
n = 100
v = rand(n)
(a, b) = histogram(v)
- #check if the sum of the bins equals the number of samples
+ # check if the sum of the bins equals the number of samples
assert_equal(np.sum(a, axis=0), n)
- #check that the bin counts are evenly spaced when the data is from a
- # linear function
+ # check that the bin counts are evenly spaced when the data is from
+ # a linear function
(a, b) = histogram(np.linspace(0, 10, 100))
assert_array_equal(a, 10)
@@ -1039,7 +1080,8 @@ class TestHistogram(TestCase):
area = np.sum(a * diff(b))
assert_almost_equal(area, 1)
- # Check with non-constant bin widths (buggy but backwards compatible)
+ # Check with non-constant bin widths (buggy but backwards
+ # compatible)
v = np.arange(10)
bins = [0, 1, 5, 9, 10]
a, b = histogram(v, bins, normed=True)
@@ -1059,7 +1101,7 @@ class TestHistogram(TestCase):
bins = [0, 1, 3, 6, 10]
a, b = histogram(v, bins, density=True)
assert_array_equal(a, .1)
- assert_equal(np.sum(a*diff(b)), 1)
+ assert_equal(np.sum(a * diff(b)), 1)
# Variale bin widths are especially useful to deal with
# infinities.
@@ -1102,20 +1144,20 @@ class TestHistogram(TestCase):
# Check the type of the returned histogram
a = np.arange(10) + .5
h, b = histogram(a)
- assert_(issubdtype(h.dtype, int))
+ assert_(np.issubdtype(h.dtype, int))
h, b = histogram(a, normed=True)
- assert_(issubdtype(h.dtype, float))
+ assert_(np.issubdtype(h.dtype, float))
h, b = histogram(a, weights=np.ones(10, int))
- assert_(issubdtype(h.dtype, int))
+ assert_(np.issubdtype(h.dtype, int))
h, b = histogram(a, weights=np.ones(10, float))
- assert_(issubdtype(h.dtype, float))
+ assert_(np.issubdtype(h.dtype, float))
def test_f32_rounding(self):
# gh-4799, check that the rounding of the edges works with float32
- x = np.array([276.318359 , -69.593948 , 21.329449], dtype=np.float32)
+ x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
assert_equal(counts_hist.sum(), 3.)
@@ -1160,11 +1202,11 @@ class TestHistogram(TestCase):
# Check with custom bins
wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
- assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2,3]))
+ assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
# Check with even bins
- wa, wb = histogram(values, bins=2, range=[1,3], weights=weights)
- assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2,3]))
+ wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
+ assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
# Decimal weights
from decimal import Decimal
@@ -1176,10 +1218,9 @@ class TestHistogram(TestCase):
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
# Check with even bins
- wa, wb = histogram(values, bins=2, range=[1,3], weights=weights)
+ wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
-
def test_empty(self):
a, b = histogram([], bins=([0, 1]))
assert_array_equal(a, np.array([0]))
@@ -1187,6 +1228,7 @@ class TestHistogram(TestCase):
class TestHistogramdd(TestCase):
+
def test_simple(self):
x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
@@ -1270,8 +1312,8 @@ class TestHistogramdd(TestCase):
assert_array_max_ulp(a, np.zeros((2, 2, 2)))
def test_bins_errors(self):
- """There are two ways to specify bins. Check for the right errors when
- mixing those."""
+ # There are two ways to specify bins. Check for the right errors
+ # when mixing those.
x = np.arange(8).reshape(2, 4)
assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
@@ -1282,7 +1324,7 @@ class TestHistogramdd(TestCase):
assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
def test_inf_edges(self):
- """Test using +/-inf bin edges works. See #1788."""
+ # Test using +/-inf bin edges works. See #1788.
with np.errstate(invalid='ignore'):
x = np.arange(6).reshape(3, 2)
expected = np.array([[1, 0], [0, 1], [0, 1]])
@@ -1294,31 +1336,31 @@ class TestHistogramdd(TestCase):
assert_allclose(h, expected)
def test_rightmost_binedge(self):
- """Test event very close to rightmost binedge.
- See Github issue #4266"""
+ # Test event very close to rightmost binedge. See Github issue #4266
x = [0.9999999995]
- bins = [[0.,0.5,1.0]]
+ bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0]
- bins = [[0.,0.5,1.0]]
+ bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0000000001]
- bins = [[0.,0.5,1.0]]
+ bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 1.)
x = [1.0001]
- bins = [[0.,0.5,1.0]]
+ bins = [[0., 0.5, 1.0]]
hist, _ = histogramdd(x, bins=bins)
assert_(hist[0] == 0.0)
assert_(hist[1] == 0.0)
class TestUnique(TestCase):
+
def test_simple(self):
x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0])
assert_(np.all(unique(x) == [0, 1, 2, 3, 4]))
@@ -1330,6 +1372,7 @@ class TestUnique(TestCase):
class TestCheckFinite(TestCase):
+
def test_simple(self):
a = [1, 2, 3]
b = [1, 2, np.inf]
@@ -1339,14 +1382,17 @@ class TestCheckFinite(TestCase):
assert_raises(ValueError, np.lib.asarray_chkfinite, c)
def test_dtype_order(self):
- """Regression test for missing dtype and order arguments"""
+ # Regression test for missing dtype and order arguments
a = [1, 2, 3]
a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64)
assert_(a.dtype == np.float64)
class catch_warn_nfb(clear_and_catch_warnings):
- """ Context manager to catch, reset warnings in function_base module
+
+ """
+ Context manager to catch, reset warnings in function_base module
+
"""
class_modules = (nfb,)
@@ -1430,7 +1476,7 @@ class TestCov(TestCase):
res2 = np.array([[0.4, -0.4], [-0.4, 0.4]])
unit_frequencies = np.ones(3, dtype=np.integer)
weights = np.array([1.0, 4.0, 1.0])
- res3 = np.array([[2./3., -2./3.], [-2./3., 2./3.]])
+ res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]])
unit_weights = np.ones(3)
x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964])
@@ -1483,19 +1529,19 @@ class TestCov(TestCase):
assert_raises(RuntimeError, cov, self.x1, fweights=f)
f = np.ones(2, dtype=np.integer)
assert_raises(RuntimeError, cov, self.x1, fweights=f)
- f = -1*np.ones(3, dtype=np.integer)
+ f = -1 * np.ones(3, dtype=np.integer)
assert_raises(ValueError, cov, self.x1, fweights=f)
def test_aweights(self):
assert_allclose(cov(self.x1, aweights=self.weights), self.res3)
- assert_allclose(cov(self.x1, aweights=3.0*self.weights),
+ assert_allclose(cov(self.x1, aweights=3.0 * self.weights),
cov(self.x1, aweights=self.weights))
assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1)
w = np.ones((2, 3))
assert_raises(RuntimeError, cov, self.x1, aweights=w)
w = np.ones(2)
assert_raises(RuntimeError, cov, self.x1, aweights=w)
- w = -1.0*np.ones(3)
+ w = -1.0 * np.ones(3)
assert_raises(ValueError, cov, self.x1, aweights=w)
def test_unit_fweights_and_aweights(self):
@@ -1512,7 +1558,7 @@ class TestCov(TestCase):
aweights=self.weights),
self.res3)
assert_allclose(cov(self.x1, fweights=self.unit_frequencies,
- aweights=3.0*self.weights),
+ aweights=3.0 * self.weights),
cov(self.x1, aweights=self.weights))
assert_allclose(cov(self.x1, fweights=self.unit_frequencies,
aweights=self.unit_weights),
@@ -1520,6 +1566,7 @@ class TestCov(TestCase):
class Test_I0(TestCase):
+
def test_simple(self):
assert_almost_equal(
i0(0.5),
@@ -1545,6 +1592,7 @@ class Test_I0(TestCase):
class TestKaiser(TestCase):
+
def test_simple(self):
assert_(np.isfinite(kaiser(1, 1.0)))
assert_almost_equal(kaiser(0, 1.0),
@@ -1563,6 +1611,7 @@ class TestKaiser(TestCase):
class TestMsort(TestCase):
+
def test_simple(self):
A = np.array([[0.44567325, 0.79115165, 0.54900530],
[0.36844147, 0.37325583, 0.96098397],
@@ -1575,6 +1624,7 @@ class TestMsort(TestCase):
class TestMeshgrid(TestCase):
+
def test_simple(self):
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7])
assert_array_equal(X, np.array([[1, 2, 3],
@@ -1628,6 +1678,7 @@ class TestMeshgrid(TestCase):
class TestPiecewise(TestCase):
+
def test_simple(self):
# Condition is single bool list
x = piecewise([0, 0], [True, False], [1])
@@ -1678,10 +1729,11 @@ class TestPiecewise(TestCase):
def test_0d_comparison(self):
x = 3
- y = piecewise(x, [x <= 3, x > 3], [4, 0])
+ piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed.
class TestBincount(TestCase):
+
def test_simple(self):
y = np.bincount(np.arange(4))
assert_array_equal(y, np.ones(4))
@@ -1747,6 +1799,7 @@ class TestBincount(TestCase):
class TestInterp(TestCase):
+
def test_exceptions(self):
assert_raises(ValueError, interp, 0, [], [])
assert_raises(ValueError, interp, 0, [0], [1, 2])
@@ -1832,10 +1885,10 @@ class TestScoreatpercentile(TestCase):
def test_2D(self):
x = np.array([[1, 1, 1],
- [1, 1, 1],
- [4, 4, 3],
- [1, 1, 1],
- [1, 1, 1]])
+ [1, 1, 1],
+ [4, 4, 3],
+ [1, 1, 1],
+ [1, 1, 1]])
assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1])
def test_linear(self):
@@ -1888,7 +1941,8 @@ class TestScoreatpercentile(TestCase):
assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6))
assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6))
assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5))
- assert_equal(np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6))
+ assert_equal(
+ np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6))
assert_equal(np.percentile(x, (25, 50),
interpolation="higher").shape, (2,))
assert_equal(np.percentile(x, (25, 50, 75),
@@ -1909,10 +1963,10 @@ class TestScoreatpercentile(TestCase):
x = np.arange(12).reshape(3, 4)
assert_equal(np.percentile(x, 50), 5.5)
self.assertTrue(np.isscalar(np.percentile(x, 50)))
- r0 = np.array([ 4., 5., 6., 7.])
+ r0 = np.array([4., 5., 6., 7.])
assert_equal(np.percentile(x, 50, axis=0), r0)
assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape)
- r1 = np.array([ 1.5, 5.5, 9.5])
+ r1 = np.array([1.5, 5.5, 9.5])
assert_almost_equal(np.percentile(x, 50, axis=1), r1)
assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape)
@@ -1930,11 +1984,11 @@ class TestScoreatpercentile(TestCase):
x = np.arange(12).reshape(3, 4)
assert_equal(np.percentile(x, 50, interpolation='lower'), 5.)
self.assertTrue(np.isscalar(np.percentile(x, 50)))
- r0 = np.array([ 4., 5., 6., 7.])
+ r0 = np.array([4., 5., 6., 7.])
c0 = np.percentile(x, 50, interpolation='lower', axis=0)
assert_equal(c0, r0)
assert_equal(c0.shape, r0.shape)
- r1 = np.array([ 1., 5., 9.])
+ r1 = np.array([1., 5., 9.])
c1 = np.percentile(x, 50, interpolation='lower', axis=1)
assert_almost_equal(c1, r1)
assert_equal(c1.shape, r1.shape)
@@ -2006,7 +2060,7 @@ class TestScoreatpercentile(TestCase):
def test_percentile_empty_dim(self):
# empty dims are preserved
- d = np.arange(11*2).reshape(11, 1, 2, 1)
+ d = np.arange(11 * 2).reshape(11, 1, 2, 1)
assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1))
assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1))
assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1))
@@ -2032,7 +2086,6 @@ class TestScoreatpercentile(TestCase):
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape,
(2, 11, 1, 2))
-
def test_percentile_no_overwrite(self):
a = np.array([2, 3, 4, 1])
np.percentile(a, [50], overwrite_input=False)
@@ -2076,19 +2129,19 @@ class TestScoreatpercentile(TestCase):
d = np.arange(3 * 5 * 7 * 11).reshape(3, 5, 7, 11)
np.random.shuffle(d)
assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0],
- np.percentile(d[:, :, :, 0].flatten(), 25))
+ np.percentile(d[:,:,:, 0].flatten(), 25))
assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1],
- np.percentile(d[:, :, 1, :].flatten(), [10, 90]))
+ np.percentile(d[:,:, 1,:].flatten(), [10, 90]))
assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2],
- np.percentile(d[:, :, 2, :].flatten(), 25))
+ np.percentile(d[:,:, 2,:].flatten(), 25))
assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2],
- np.percentile(d[2, :, :, :].flatten(), 25))
+ np.percentile(d[2,:,:,:].flatten(), 25))
assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1],
- np.percentile(d[2, 1, :, :].flatten(), 25))
+ np.percentile(d[2, 1,:,:].flatten(), 25))
assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1],
- np.percentile(d[2, :, :, 1].flatten(), 25))
+ np.percentile(d[2,:,:, 1].flatten(), 25))
assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2],
- np.percentile(d[2, :, 2, :].flatten(), 25))
+ np.percentile(d[2,:, 2,:].flatten(), 25))
def test_extended_axis_invalid(self):
d = np.ones((3, 5, 7, 11))
@@ -2117,6 +2170,7 @@ class TestScoreatpercentile(TestCase):
keepdims=True).shape, (2, 1, 1, 7, 1))
assert_equal(np.percentile(d, [1, 7], axis=(0, 3),
keepdims=True).shape, (2, 1, 5, 7, 1))
+
def test_out(self):
o = np.zeros((4,))
d = np.ones((3, 4))
@@ -2130,7 +2184,6 @@ class TestScoreatpercentile(TestCase):
assert_equal(np.percentile(d, 2, out=o), o)
assert_equal(np.percentile(d, 2, interpolation='nearest', out=o), o)
-
def test_out_nan(self):
with warnings.catch_warnings(record=True):
warnings.filterwarnings('always', '', RuntimeWarning)
@@ -2138,13 +2191,16 @@ class TestScoreatpercentile(TestCase):
d = np.ones((3, 4))
d[2, 1] = np.nan
assert_equal(np.percentile(d, 0, 0, out=o), o)
- assert_equal(np.percentile(d, 0, 0, interpolation='nearest', out=o), o)
+ assert_equal(
+ np.percentile(d, 0, 0, interpolation='nearest', out=o), o)
o = np.zeros((3,))
assert_equal(np.percentile(d, 1, 1, out=o), o)
- assert_equal(np.percentile(d, 1, 1, interpolation='nearest', out=o), o)
+ assert_equal(
+ np.percentile(d, 1, 1, interpolation='nearest', out=o), o)
o = np.zeros(())
assert_equal(np.percentile(d, 1, out=o), o)
- assert_equal(np.percentile(d, 1, interpolation='nearest', out=o), o)
+ assert_equal(
+ np.percentile(d, 1, interpolation='nearest', out=o), o)
def test_nan_behavior(self):
a = np.arange(24, dtype=float)
@@ -2171,7 +2227,8 @@ class TestScoreatpercentile(TestCase):
# axis0 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0)
- b[2, 3] = np.nan; b[1, 2] = np.nan
+ b[2, 3] = np.nan
+ b[1, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.percentile(a, 0.3, 0), b)
@@ -2179,47 +2236,57 @@ class TestScoreatpercentile(TestCase):
# axis0 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], 0)
- b[:, 2, 3] = np.nan; b[:, 1, 2] = np.nan
+ b[:, 2, 3] = np.nan
+ b[:, 1, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
# axis1 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1)
- b[1, 3] = np.nan; b[1, 2] = np.nan
+ b[1, 3] = np.nan
+ b[1, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.percentile(a, 0.3, 1), b)
# axis1 not zerod
- b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1)
- b[:, 1, 3] = np.nan; b[:, 1, 2] = np.nan
+ b = np.percentile(
+ np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1)
+ b[:, 1, 3] = np.nan
+ b[:, 1, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
# axis02 zerod
- b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2))
- b[1] = np.nan; b[2] = np.nan
+ b = np.percentile(
+ np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2))
+ b[1] = np.nan
+ b[2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.percentile(a, 0.3, (0, 2)), b)
# axis02 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2))
- b[:, 1] = np.nan; b[:, 2] = np.nan
+ b[:, 1] = np.nan
+ b[:, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
# axis02 not zerod with nearest interpolation
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2), interpolation='nearest')
- b[:, 1] = np.nan; b[:, 2] = np.nan
+ b[:, 1] = np.nan
+ b[:, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.percentile(
a, [0.3, 0.6], (0, 2), interpolation='nearest'), b)
+
class TestMedian(TestCase):
+
def test_basic(self):
a0 = np.array(1)
a1 = np.arange(2)
@@ -2245,7 +2312,6 @@ class TestMedian(TestCase):
assert_equal(np.median(a).ndim, 0)
assert_(w[0].category is RuntimeWarning)
-
def test_axis_keyword(self):
a3 = np.array([[2, 3],
[0, 1],
@@ -2307,6 +2373,7 @@ class TestMedian(TestCase):
def test_subclass(self):
# gh-3846
class MySubClass(np.ndarray):
+
def __new__(cls, input_array, info=None):
obj = np.asarray(input_array).view(cls)
obj.info = info
@@ -2315,7 +2382,7 @@ class TestMedian(TestCase):
def mean(self, axis=None, dtype=None, out=None):
return -7
- a = MySubClass([1,2,3])
+ a = MySubClass([1, 2, 3])
assert_equal(np.median(a), -7)
def test_out(self):
@@ -2353,39 +2420,42 @@ class TestMedian(TestCase):
a[1, 2, 3] = np.nan
a[1, 1, 2] = np.nan
- #no axis
+ # no axis
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a), np.nan)
assert_equal(np.median(a).ndim, 0)
assert_(w[0].category is RuntimeWarning)
- #axis0
+ # axis0
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0)
- b[2, 3] = np.nan; b[1, 2] = np.nan
+ b[2, 3] = np.nan
+ b[1, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a, 0), b)
assert_equal(len(w), 1)
- #axis1
+ # axis1
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1)
- b[1, 3] = np.nan; b[1, 2] = np.nan
+ b[1, 3] = np.nan
+ b[1, 2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a, 1), b)
assert_equal(len(w), 1)
- #axis02
+ # axis02
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2))
- b[1] = np.nan; b[2] = np.nan
+ b[1] = np.nan
+ b[2] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a, (0, 2)), b)
assert_equal(len(w), 1)
def test_object(self):
- o = np.arange(7.);
+ o = np.arange(7.)
assert_(type(np.median(o.astype(object))), float)
o[2] = np.nan
assert_(type(np.median(o.astype(object))), float)
@@ -2406,19 +2476,19 @@ class TestMedian(TestCase):
d = np.arange(3 * 5 * 7 * 11).reshape(3, 5, 7, 11)
np.random.shuffle(d)
assert_equal(np.median(d, axis=(0, 1, 2))[0],
- np.median(d[:, :, :, 0].flatten()))
+ np.median(d[:,:,:, 0].flatten()))
assert_equal(np.median(d, axis=(0, 1, 3))[1],
- np.median(d[:, :, 1, :].flatten()))
+ np.median(d[:,:, 1,:].flatten()))
assert_equal(np.median(d, axis=(3, 1, -4))[2],
- np.median(d[:, :, 2, :].flatten()))
+ np.median(d[:,:, 2,:].flatten()))
assert_equal(np.median(d, axis=(3, 1, 2))[2],
- np.median(d[2, :, :, :].flatten()))
+ np.median(d[2,:,:,:].flatten()))
assert_equal(np.median(d, axis=(3, 2))[2, 1],
- np.median(d[2, 1, :, :].flatten()))
+ np.median(d[2, 1,:,:].flatten()))
assert_equal(np.median(d, axis=(1, -2))[2, 1],
- np.median(d[2, :, :, 1].flatten()))
+ np.median(d[2,:,:, 1].flatten()))
assert_equal(np.median(d, axis=(1, 3))[2, 2],
- np.median(d[2, :, 2, :].flatten()))
+ np.median(d[2,:, 2,:].flatten()))
def test_extended_axis_invalid(self):
d = np.ones((3, 5, 7, 11))
@@ -2444,7 +2514,6 @@ class TestMedian(TestCase):
(1, 1, 7, 1))
-
class TestAdd_newdoc_ufunc(TestCase):
def test_ufunc_arg(self):