summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_histograms.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2017-12-09 13:58:42 -0800
committerEric Wieser <wieser.eric@gmail.com>2017-12-10 16:58:42 -0800
commit34c9950ccdb8a2f64916903b09c2c39233be0adf (patch)
tree793c0714f9ace7b4722804263d456d02f39a0843 /numpy/lib/tests/test_histograms.py
parentbbe92a4820eb3eba7235a9ffbd44605032981f42 (diff)
downloadnumpy-34c9950ccdb8a2f64916903b09c2c39233be0adf.tar.gz
MAINT: Move histogram and histogramdd into their own module
800 self-contained lines are easily enough to go in their own file, as are the 500 lines of tests. For compatibility, the names are still available through `np.lib.function_base.histogram` and `from np.lib.function_base import *` For simplicity of imports, all of the unqualified `np.` names are now qualified
Diffstat (limited to 'numpy/lib/tests/test_histograms.py')
-rw-r--r--numpy/lib/tests/test_histograms.py527
1 files changed, 527 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py
new file mode 100644
index 000000000..59baf91fe
--- /dev/null
+++ b/numpy/lib/tests/test_histograms.py
@@ -0,0 +1,527 @@
+from __future__ import division, absolute_import, print_function
+
+import numpy as np
+
+from numpy.lib.histograms import histogram, histogramdd
+from numpy.testing import (
+ run_module_suite, assert_, assert_equal, assert_array_equal,
+ assert_almost_equal, assert_array_almost_equal, assert_raises,
+ assert_allclose, assert_array_max_ulp, assert_warns, assert_raises_regex,
+ dec, suppress_warnings, HAS_REFCOUNT,
+)
+
+
+class TestHistogram(object):
+
+ def setup(self):
+ pass
+
+ def teardown(self):
+ pass
+
+ def test_simple(self):
+ n = 100
+ v = np.random.rand(n)
+ (a, b) = histogram(v)
+ # check if the sum of the bins equals the number of samples
+ assert_equal(np.sum(a, axis=0), n)
+ # check that the bin counts are evenly spaced when the data is from
+ # a linear function
+ (a, b) = histogram(np.linspace(0, 10, 100))
+ assert_array_equal(a, 10)
+
+ def test_one_bin(self):
+ # Ticket 632
+ hist, edges = histogram([1, 2, 3, 4], [1, 2])
+ assert_array_equal(hist, [2, ])
+ assert_array_equal(edges, [1, 2])
+ assert_raises(ValueError, histogram, [1, 2], bins=0)
+ h, e = histogram([1, 2], bins=1)
+ assert_equal(h, np.array([2]))
+ assert_allclose(e, np.array([1., 2.]))
+
+ def test_normed(self):
+ # Check that the integral of the density equals 1.
+ n = 100
+ v = np.random.rand(n)
+ a, b = histogram(v, normed=True)
+ area = np.sum(a * np.diff(b))
+ assert_almost_equal(area, 1)
+
+ # Check with non-constant bin widths (buggy but backwards
+ # compatible)
+ v = np.arange(10)
+ bins = [0, 1, 5, 9, 10]
+ a, b = histogram(v, bins, normed=True)
+ area = np.sum(a * np.diff(b))
+ assert_almost_equal(area, 1)
+
+ def test_density(self):
+ # Check that the integral of the density equals 1.
+ n = 100
+ v = np.random.rand(n)
+ a, b = histogram(v, density=True)
+ area = np.sum(a * np.diff(b))
+ assert_almost_equal(area, 1)
+
+ # Check with non-constant bin widths
+ v = np.arange(10)
+ bins = [0, 1, 3, 6, 10]
+ a, b = histogram(v, bins, density=True)
+ assert_array_equal(a, .1)
+ assert_equal(np.sum(a * np.diff(b)), 1)
+
+ # Variale bin widths are especially useful to deal with
+ # infinities.
+ v = np.arange(10)
+ bins = [0, 1, 3, 6, np.inf]
+ a, b = histogram(v, bins, density=True)
+ assert_array_equal(a, [.1, .1, .1, 0.])
+
+ # Taken from a bug report from N. Becker on the numpy-discussion
+ # mailing list Aug. 6, 2010.
+ counts, dmy = np.histogram(
+ [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True)
+ assert_equal(counts, [.25, 0])
+
+ def test_outliers(self):
+ # Check that outliers are not tallied
+ a = np.arange(10) + .5
+
+ # Lower outliers
+ h, b = histogram(a, range=[0, 9])
+ assert_equal(h.sum(), 9)
+
+ # Upper outliers
+ h, b = histogram(a, range=[1, 10])
+ assert_equal(h.sum(), 9)
+
+ # Normalization
+ h, b = histogram(a, range=[1, 9], normed=True)
+ assert_almost_equal((h * np.diff(b)).sum(), 1, decimal=15)
+
+ # Weights
+ w = np.arange(10) + .5
+ h, b = histogram(a, range=[1, 9], weights=w, normed=True)
+ assert_equal((h * np.diff(b)).sum(), 1)
+
+ h, b = histogram(a, bins=8, range=[1, 9], weights=w)
+ assert_equal(h, w[1:-1])
+
+ def test_type(self):
+ # Check the type of the returned histogram
+ a = np.arange(10) + .5
+ h, b = histogram(a)
+ assert_(np.issubdtype(h.dtype, np.integer))
+
+ h, b = histogram(a, normed=True)
+ assert_(np.issubdtype(h.dtype, np.floating))
+
+ h, b = histogram(a, weights=np.ones(10, int))
+ assert_(np.issubdtype(h.dtype, np.integer))
+
+ h, b = histogram(a, weights=np.ones(10, float))
+ assert_(np.issubdtype(h.dtype, np.floating))
+
+ def test_f32_rounding(self):
+ # gh-4799, check that the rounding of the edges works with float32
+ x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32)
+ y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32)
+ counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100)
+ assert_equal(counts_hist.sum(), 3.)
+
+ def test_weights(self):
+ v = np.random.rand(100)
+ w = np.ones(100) * 5
+ a, b = histogram(v)
+ na, nb = histogram(v, normed=True)
+ wa, wb = histogram(v, weights=w)
+ nwa, nwb = histogram(v, weights=w, normed=True)
+ assert_array_almost_equal(a * 5, wa)
+ assert_array_almost_equal(na, nwa)
+
+ # Check weights are properly applied.
+ v = np.linspace(0, 10, 10)
+ w = np.concatenate((np.zeros(5), np.ones(5)))
+ wa, wb = histogram(v, bins=np.arange(11), weights=w)
+ assert_array_almost_equal(wa, w)
+
+ # Check with integer weights
+ wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1])
+ assert_array_equal(wa, [4, 5, 0, 1])
+ wa, wb = histogram(
+ [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True)
+ assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4)
+
+ # Check weights with non-uniform bin widths
+ a, b = histogram(
+ np.arange(9), [0, 1, 3, 6, 10],
+ weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True)
+ assert_almost_equal(a, [.2, .1, .1, .075])
+
+ def test_exotic_weights(self):
+
+ # Test the use of weights that are not integer or floats, but e.g.
+ # complex numbers or object types.
+
+ # Complex weights
+ values = np.array([1.3, 2.5, 2.3])
+ weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2])
+
+ # Check with custom bins
+ wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
+ assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
+
+ # Check with even bins
+ wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
+ assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3]))
+
+ # Decimal weights
+ from decimal import Decimal
+ values = np.array([1.3, 2.5, 2.3])
+ weights = np.array([Decimal(1), Decimal(2), Decimal(3)])
+
+ # Check with custom bins
+ wa, wb = histogram(values, bins=[0, 2, 3], weights=weights)
+ assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
+
+ # Check with even bins
+ wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights)
+ assert_array_almost_equal(wa, [Decimal(1), Decimal(5)])
+
+ def test_no_side_effects(self):
+ # This is a regression test that ensures that values passed to
+ # ``histogram`` are unchanged.
+ values = np.array([1.3, 2.5, 2.3])
+ np.histogram(values, range=[-10, 10], bins=100)
+ assert_array_almost_equal(values, [1.3, 2.5, 2.3])
+
+ def test_empty(self):
+ a, b = histogram([], bins=([0, 1]))
+ assert_array_equal(a, np.array([0]))
+ assert_array_equal(b, np.array([0, 1]))
+
+ def test_error_binnum_type (self):
+ # Tests if right Error is raised if bins argument is float
+ vals = np.linspace(0.0, 1.0, num=100)
+ histogram(vals, 5)
+ assert_raises(TypeError, histogram, vals, 2.4)
+
+ def test_finite_range(self):
+ # Normal ranges should be fine
+ vals = np.linspace(0.0, 1.0, num=100)
+ histogram(vals, range=[0.25,0.75])
+ assert_raises(ValueError, histogram, vals, range=[np.nan,0.75])
+ assert_raises(ValueError, histogram, vals, range=[0.25,np.inf])
+
+ def test_bin_edge_cases(self):
+ # Ensure that floating-point computations correctly place edge cases.
+ arr = np.array([337, 404, 739, 806, 1007, 1811, 2012])
+ hist, edges = np.histogram(arr, bins=8296, range=(2, 2280))
+ mask = hist > 0
+ left_edges = edges[:-1][mask]
+ right_edges = edges[1:][mask]
+ for x, left, right in zip(arr, left_edges, right_edges):
+ assert_(x >= left)
+ assert_(x < right)
+
+ def test_last_bin_inclusive_range(self):
+ arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
+ hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5))
+ assert_equal(hist[-1], 1)
+
+ def test_unsigned_monotonicity_check(self):
+ # Ensures ValueError is raised if bins not increasing monotonically
+ # when bins contain unsigned values (see #9222)
+ arr = np.array([2])
+ bins = np.array([1, 3, 1], dtype='uint64')
+ with assert_raises(ValueError):
+ hist, edges = np.histogram(arr, bins=bins)
+
+
+class TestHistogramOptimBinNums(object):
+ """
+ Provide test coverage when using provided estimators for optimal number of
+ bins
+ """
+
+ def test_empty(self):
+ estimator_list = ['fd', 'scott', 'rice', 'sturges',
+ 'doane', 'sqrt', 'auto']
+ # check it can deal with empty data
+ for estimator in estimator_list:
+ a, b = histogram([], bins=estimator)
+ assert_array_equal(a, np.array([0]))
+ assert_array_equal(b, np.array([0, 1]))
+
+ def test_simple(self):
+ """
+ Straightforward testing with a mixture of linspace data (for
+ consistency). All test values have been precomputed and the values
+ shouldn't change
+ """
+ # Some basic sanity checking, with some fixed data.
+ # Checking for the correct number of bins
+ basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7,
+ 'doane': 8, 'sqrt': 8, 'auto': 7},
+ 500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10,
+ 'doane': 12, 'sqrt': 23, 'auto': 10},
+ 5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14,
+ 'doane': 17, 'sqrt': 71, 'auto': 17}}
+
+ for testlen, expectedResults in basic_test.items():
+ # Create some sort of non uniform data to test with
+ # (2 peak uniform mixture)
+ x1 = np.linspace(-10, -1, testlen // 5 * 2)
+ x2 = np.linspace(1, 10, testlen // 5 * 3)
+ x = np.concatenate((x1, x2))
+ for estimator, numbins in expectedResults.items():
+ a, b = np.histogram(x, estimator)
+ assert_equal(len(a), numbins, err_msg="For the {0} estimator "
+ "with datasize of {1}".format(estimator, testlen))
+
+ def test_small(self):
+ """
+ Smaller datasets have the potential to cause issues with the data
+ adaptive methods, especially the FD method. All bin numbers have been
+ precalculated.
+ """
+ small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
+ 'doane': 1, 'sqrt': 1},
+ 2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2,
+ 'doane': 1, 'sqrt': 2},
+ 3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3,
+ 'doane': 3, 'sqrt': 2}}
+
+ for testlen, expectedResults in small_dat.items():
+ testdat = np.arange(testlen)
+ for estimator, expbins in expectedResults.items():
+ a, b = np.histogram(testdat, estimator)
+ assert_equal(len(a), expbins, err_msg="For the {0} estimator "
+ "with datasize of {1}".format(estimator, testlen))
+
+ def test_incorrect_methods(self):
+ """
+ Check a Value Error is thrown when an unknown string is passed in
+ """
+ check_list = ['mad', 'freeman', 'histograms', 'IQR']
+ for estimator in check_list:
+ assert_raises(ValueError, histogram, [1, 2, 3], estimator)
+
+ def test_novariance(self):
+ """
+ Check that methods handle no variance in data
+ Primarily for Scott and FD as the SD and IQR are both 0 in this case
+ """
+ novar_dataset = np.ones(100)
+ novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1,
+ 'doane': 1, 'sqrt': 1, 'auto': 1}
+
+ for estimator, numbins in novar_resultdict.items():
+ a, b = np.histogram(novar_dataset, estimator)
+ assert_equal(len(a), numbins, err_msg="{0} estimator, "
+ "No Variance test".format(estimator))
+
+ def test_outlier(self):
+ """
+ Check the FD, Scott and Doane with outliers.
+
+ The FD estimates a smaller binwidth since it's less affected by
+ outliers. Since the range is so (artificially) large, this means more
+ bins, most of which will be empty, but the data of interest usually is
+ unaffected. The Scott estimator is more affected and returns fewer bins,
+ despite most of the variance being in one area of the data. The Doane
+ estimator lies somewhere between the other two.
+ """
+ xcenter = np.linspace(-10, 10, 50)
+ outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter))
+
+ outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11}
+
+ for estimator, numbins in outlier_resultdict.items():
+ a, b = np.histogram(outlier_dataset, estimator)
+ assert_equal(len(a), numbins)
+
+ def test_simple_range(self):
+ """
+ Straightforward testing with a mixture of linspace data (for
+ consistency). Adding in a 3rd mixture that will then be
+ completely ignored. All test values have been precomputed and
+ the shouldn't change.
+ """
+ # some basic sanity checking, with some fixed data.
+ # Checking for the correct number of bins
+ basic_test = {
+ 50: {'fd': 8, 'scott': 8, 'rice': 15,
+ 'sturges': 14, 'auto': 14},
+ 500: {'fd': 15, 'scott': 16, 'rice': 32,
+ 'sturges': 20, 'auto': 20},
+ 5000: {'fd': 33, 'scott': 33, 'rice': 69,
+ 'sturges': 27, 'auto': 33}
+ }
+
+ for testlen, expectedResults in basic_test.items():
+ # create some sort of non uniform data to test with
+ # (3 peak uniform mixture)
+ x1 = np.linspace(-10, -1, testlen // 5 * 2)
+ x2 = np.linspace(1, 10, testlen // 5 * 3)
+ x3 = np.linspace(-100, -50, testlen)
+ x = np.hstack((x1, x2, x3))
+ for estimator, numbins in expectedResults.items():
+ a, b = np.histogram(x, estimator, range = (-20, 20))
+ msg = "For the {0} estimator".format(estimator)
+ msg += " with datasize of {0}".format(testlen)
+ assert_equal(len(a), numbins, err_msg=msg)
+
+ def test_simple_weighted(self):
+ """
+ Check that weighted data raises a TypeError
+ """
+ estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto']
+ for estimator in estimator_list:
+ assert_raises(TypeError, histogram, [1, 2, 3],
+ estimator, weights=[1, 2, 3])
+
+
+class TestHistogramdd(object):
+
+ def test_simple(self):
+ x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
+ [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
+ H, edges = histogramdd(x, (2, 3, 3),
+ range=[[-1, 1], [0, 3], [0, 3]])
+ answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]],
+ [[0, 1, 0], [0, 0, 1], [0, 0, 1]]])
+ assert_array_equal(H, answer)
+
+ # Check normalization
+ ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
+ H, edges = histogramdd(x, bins=ed, normed=True)
+ assert_(np.all(H == answer / 12.))
+
+ # Check that H has the correct shape.
+ H, edges = histogramdd(x, (2, 3, 4),
+ range=[[-1, 1], [0, 3], [0, 4]],
+ normed=True)
+ answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
+ [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
+ assert_array_almost_equal(H, answer / 6., 4)
+ # Check that a sequence of arrays is accepted and H has the correct
+ # shape.
+ z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
+ H, edges = histogramdd(
+ z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]])
+ answer = np.array([[[0, 0], [0, 0], [0, 0]],
+ [[0, 1], [0, 0], [1, 0]],
+ [[0, 1], [0, 0], [0, 0]],
+ [[0, 0], [0, 0], [0, 0]]])
+ assert_array_equal(H, answer)
+
+ Z = np.zeros((5, 5, 5))
+ Z[list(range(5)), list(range(5)), list(range(5))] = 1.
+ H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5)
+ assert_array_equal(H, Z)
+
+ def test_shape_3d(self):
+ # All possible permutations for bins of different lengths in 3D.
+ bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
+ (4, 5, 6))
+ r = np.random.rand(10, 3)
+ for b in bins:
+ H, edges = histogramdd(r, b)
+ assert_(H.shape == b)
+
+ def test_shape_4d(self):
+ # All possible permutations for bins of different lengths in 4D.
+ bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
+ (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
+ (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
+ (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
+ (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
+ (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))
+
+ r = np.random.rand(10, 4)
+ for b in bins:
+ H, edges = histogramdd(r, b)
+ assert_(H.shape == b)
+
+ def test_weights(self):
+ v = np.random.rand(100, 2)
+ hist, edges = histogramdd(v)
+ n_hist, edges = histogramdd(v, normed=True)
+ w_hist, edges = histogramdd(v, weights=np.ones(100))
+ assert_array_equal(w_hist, hist)
+ w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, normed=True)
+ assert_array_equal(w_hist, n_hist)
+ w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
+ assert_array_equal(w_hist, 2 * hist)
+
+ def test_identical_samples(self):
+ x = np.zeros((10, 2), int)
+ hist, edges = histogramdd(x, bins=2)
+ assert_array_equal(edges[0], np.array([-0.5, 0., 0.5]))
+
+ def test_empty(self):
+ a, b = histogramdd([[], []], bins=([0, 1], [0, 1]))
+ assert_array_max_ulp(a, np.array([[0.]]))
+ a, b = np.histogramdd([[], [], []], bins=2)
+ assert_array_max_ulp(a, np.zeros((2, 2, 2)))
+
+ def test_bins_errors(self):
+ # There are two ways to specify bins. Check for the right errors
+ # when mixing those.
+ x = np.arange(8).reshape(2, 4)
+ assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5])
+ assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1])
+ assert_raises(
+ ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 2, 3]])
+ assert_raises(
+ ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]])
+ assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]]))
+
+ def test_inf_edges(self):
+ # Test using +/-inf bin edges works. See #1788.
+ with np.errstate(invalid='ignore'):
+ x = np.arange(6).reshape(3, 2)
+ expected = np.array([[1, 0], [0, 1], [0, 1]])
+ h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]])
+ assert_allclose(h, expected)
+ h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])])
+ assert_allclose(h, expected)
+ h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]])
+ assert_allclose(h, expected)
+
+ def test_rightmost_binedge(self):
+ # Test event very close to rightmost binedge. See Github issue #4266
+ x = [0.9999999995]
+ bins = [[0., 0.5, 1.0]]
+ hist, _ = histogramdd(x, bins=bins)
+ assert_(hist[0] == 0.0)
+ assert_(hist[1] == 1.)
+ x = [1.0]
+ bins = [[0., 0.5, 1.0]]
+ hist, _ = histogramdd(x, bins=bins)
+ assert_(hist[0] == 0.0)
+ assert_(hist[1] == 1.)
+ x = [1.0000000001]
+ bins = [[0., 0.5, 1.0]]
+ hist, _ = histogramdd(x, bins=bins)
+ assert_(hist[0] == 0.0)
+ assert_(hist[1] == 1.)
+ x = [1.0001]
+ bins = [[0., 0.5, 1.0]]
+ hist, _ = histogramdd(x, bins=bins)
+ assert_(hist[0] == 0.0)
+ assert_(hist[1] == 0.0)
+
+ def test_finite_range(self):
+ vals = np.random.random((100, 3))
+ histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]])
+ assert_raises(ValueError, histogramdd, vals,
+ range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]])
+ assert_raises(ValueError, histogramdd, vals,
+ range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]])
+
+
+if __name__ == "__main__":
+ run_module_suite()