summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_histograms.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2018-07-08 15:47:00 -0600
committerGitHub <noreply@github.com>2018-07-08 15:47:00 -0600
commitd89bc4bbf541affbcf87498ff4af86b9451480cd (patch)
tree0e5abbb2b4c7448ced954a782c64be82f16d4561 /numpy/lib/tests/test_histograms.py
parenta56c4e6251d6e607759788727ede2fe2f10a417b (diff)
parent8ea9e8bf13e4292d02e9ea5af2f4d10c07e02459 (diff)
downloadnumpy-d89bc4bbf541affbcf87498ff4af86b9451480cd.tar.gz
Merge pull request #11531 from eric-wieser/histogramdd-density-no-deprecation
ENH: Add density argument to histogramdd.
Diffstat (limited to 'numpy/lib/tests/test_histograms.py')
-rw-r--r--numpy/lib/tests/test_histograms.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py
index d22aa5a27..f136b5c81 100644
--- a/numpy/lib/tests/test_histograms.py
+++ b/numpy/lib/tests/test_histograms.py
@@ -547,13 +547,13 @@ class TestHistogramdd(object):
# Check normalization
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
- H, edges = histogramdd(x, bins=ed, normed=True)
+ H, edges = histogramdd(x, bins=ed, density=True)
assert_(np.all(H == answer / 12.))
# Check that H has the correct shape.
H, edges = histogramdd(x, (2, 3, 4),
range=[[-1, 1], [0, 3], [0, 4]],
- normed=True)
+ density=True)
answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]],
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]])
assert_array_almost_equal(H, answer / 6., 4)
@@ -599,10 +599,10 @@ class TestHistogramdd(object):
def test_weights(self):
v = np.random.rand(100, 2)
hist, edges = histogramdd(v)
- n_hist, edges = histogramdd(v, normed=True)
+ n_hist, edges = histogramdd(v, density=True)
w_hist, edges = histogramdd(v, weights=np.ones(100))
assert_array_equal(w_hist, hist)
- w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, normed=True)
+ w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, density=True)
assert_array_equal(w_hist, n_hist)
w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2)
assert_array_equal(w_hist, 2 * hist)
@@ -708,7 +708,7 @@ class TestHistogramdd(object):
assert_equal(hist[0, 0], 1)
- def test_normed_non_uniform_2d(self):
+ def test_density_non_uniform_2d(self):
# Defines the following grid:
#
# 0 2 8
@@ -732,14 +732,14 @@ class TestHistogramdd(object):
assert_equal(hist, relative_areas)
# resulting histogram should be uniform, since counts and areas are propotional
- hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), normed=True)
+ hist, edges = histogramdd((y, x), bins=(y_edges, x_edges), density=True)
assert_equal(hist, 1 / (8*8))
- def test_normed_non_uniform_1d(self):
+ def test_density_non_uniform_1d(self):
# compare to histogram to show the results are the same
v = np.arange(10)
bins = np.array([0, 1, 3, 6, 10])
hist, edges = histogram(v, bins, density=True)
- hist_dd, edges_dd = histogramdd((v,), (bins,), normed=True)
+ hist_dd, edges_dd = histogramdd((v,), (bins,), density=True)
assert_equal(hist, hist_dd)
assert_equal(edges, edges_dd[0])