summaryrefslogtreecommitdiff
path: root/numpy/lib/tests/test_nanfunctions.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2016-09-02 09:11:59 -0500
committerGitHub <noreply@github.com>2016-09-02 09:11:59 -0500
commit9164f23c19c049e28d4d4825a53bbb01aedabcfc (patch)
treef017b7eb7565690a755263df12c835d61e89a8a4 /numpy/lib/tests/test_nanfunctions.py
parent8eedd3e911b7e3f5f35961871ddb8ee1559d4225 (diff)
parent514d13679a55a82a96689679002c4ddc514641ce (diff)
downloadnumpy-9164f23c19c049e28d4d4825a53bbb01aedabcfc.tar.gz
Merge pull request #7099 from seberg/suppressed_warnings
Suppressed warnings
Diffstat (limited to 'numpy/lib/tests/test_nanfunctions.py')
-rw-r--r--numpy/lib/tests/test_nanfunctions.py84
1 files changed, 45 insertions, 39 deletions
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 03f9beff6..06c0953b5 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -5,7 +5,7 @@ import warnings
import numpy as np
from numpy.testing import (
run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal,
- assert_warns, assert_no_warnings, assert_raises, assert_array_equal
+ assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings
)
@@ -167,8 +167,8 @@ class TestNanFunctions_ArgminArgmax(TestCase):
def test_result_values(self):
for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]):
for row in _ndat:
- with warnings.catch_warnings(record=True):
- warnings.simplefilter('always')
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "invalid value encountered in")
ind = f(row)
val = row[ind]
# comparing with NaN is tricky as the result
@@ -317,26 +317,34 @@ class SharedNanFunctionsTestsMixin(object):
codes = 'efdgFDG'
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for c in codes:
- tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
- res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
- res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
- assert_(res is tgt)
+ with suppress_warnings() as sup:
+ if nf in {np.nanstd, np.nanvar} and c in 'FDG':
+ # Giving the warning is a small bug, see gh-8000
+ sup.filter(np.ComplexWarning)
+ tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type
+ res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type
+ res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type
+ assert_(res is tgt)
def test_dtype_from_char(self):
mat = np.eye(3)
codes = 'efdgFDG'
for nf, rf in zip(self.nanfuncs, self.stdfuncs):
for c in codes:
- tgt = rf(mat, dtype=c, axis=1).dtype.type
- res = nf(mat, dtype=c, axis=1).dtype.type
- assert_(res is tgt)
- # scalar case
- tgt = rf(mat, dtype=c, axis=None).dtype.type
- res = nf(mat, dtype=c, axis=None).dtype.type
- assert_(res is tgt)
+ with suppress_warnings() as sup:
+ if nf in {np.nanstd, np.nanvar} and c in 'FDG':
+ # Giving the warning is a small bug, see gh-8000
+ sup.filter(np.ComplexWarning)
+ tgt = rf(mat, dtype=c, axis=1).dtype.type
+ res = nf(mat, dtype=c, axis=1).dtype.type
+ assert_(res is tgt)
+ # scalar case
+ tgt = rf(mat, dtype=c, axis=None).dtype.type
+ res = nf(mat, dtype=c, axis=None).dtype.type
+ assert_(res is tgt)
def test_dtype_from_input(self):
codes = 'efdgFDG'
@@ -524,16 +532,16 @@ class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin):
dsize = [len(d) for d in _rdat]
for nf, rf in zip(nanfuncs, stdfuncs):
for ddof in range(5):
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+ sup.filter(np.ComplexWarning)
tgt = [ddof >= d for d in dsize]
res = nf(_ndat, axis=1, ddof=ddof)
assert_equal(np.isnan(res), tgt)
if any(tgt):
- assert_(len(w) == 1)
- assert_(issubclass(w[0].category, RuntimeWarning))
+ assert_(len(sup.log) == 1)
else:
- assert_(len(w) == 0)
+ assert_(len(sup.log) == 0)
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
@@ -585,8 +593,8 @@ class TestNanFunctions_Median(TestCase):
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
w = w.astype(np.intp)
d[tuple(w)] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always', RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
res = np.nanmedian(d, axis=None, keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanmedian(d, axis=(0, 1), keepdims=True)
@@ -642,22 +650,20 @@ class TestNanFunctions_Median(TestCase):
def test_allnans(self):
mat = np.array([np.nan]*9).reshape(3, 3)
for axis in [None, 0, 1]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
- warnings.simplefilter('ignore', FutureWarning)
+ with suppress_warnings() as sup:
+ sup.record(RuntimeWarning)
+
assert_(np.isnan(np.nanmedian(mat, axis=axis)).all())
if axis is None:
- assert_(len(w) == 1)
+ assert_(len(sup.log) == 1)
else:
- assert_(len(w) == 3)
- assert_(issubclass(w[0].category, RuntimeWarning))
+ assert_(len(sup.log) == 3)
# Check scalar
assert_(np.isnan(np.nanmedian(np.nan)))
if axis is None:
- assert_(len(w) == 2)
+ assert_(len(sup.log) == 2)
else:
- assert_(len(w) == 4)
- assert_(issubclass(w[0].category, RuntimeWarning))
+ assert_(len(sup.log) == 4)
def test_empty(self):
mat = np.zeros((0, 3))
@@ -685,8 +691,8 @@ class TestNanFunctions_Median(TestCase):
assert_raises(ValueError, np.nanmedian, d, axis=(1, 1))
def test_float_special(self):
- with warnings.catch_warnings(record=True):
- warnings.simplefilter('ignore', RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
a = np.array([[np.inf, np.nan], [np.nan, np.nan]])
assert_equal(np.nanmedian(a, axis=0), [np.inf, np.nan])
assert_equal(np.nanmedian(a, axis=1), [np.inf, np.nan])
@@ -723,8 +729,8 @@ class TestNanFunctions_Percentile(TestCase):
w = np.random.random((4, 200)) * np.array(d.shape)[:, None]
w = w.astype(np.intp)
d[tuple(w)] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always', RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning)
res = np.nanpercentile(d, 90, axis=None, keepdims=True)
assert_equal(res.shape, (1, 1, 1, 1))
res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True)
@@ -819,8 +825,8 @@ class TestNanFunctions_Percentile(TestCase):
large_mat[:, :, 3:] *= 2
for axis in [None, 0, 1]:
for keepdim in [False, True]:
- with warnings.catch_warnings(record=True) as w:
- warnings.simplefilter('always')
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "All-NaN slice encountered")
val = np.percentile(mat, perc, axis=axis, keepdims=keepdim)
nan_val = np.nanpercentile(nan_mat, perc, axis=axis,
keepdims=keepdim)