summaryrefslogtreecommitdiff
path: root/numpy/lib/tests
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2019-04-23 01:33:13 -0700
committerEric Wieser <wieser.eric@gmail.com>2019-04-23 01:33:13 -0700
commit20472595f5b9f4b2fcfedcf6aae9684f95af1c8c (patch)
tree6e39eabe01a85454c1703b1a1ee201e57d02b1eb /numpy/lib/tests
parentb5895be146cdc3063ffa9ca8ae27b5bcf7992719 (diff)
parentf91b033aa35b929610c0db12f16b1b0c1ddc08e6 (diff)
downloadnumpy-20472595f5b9f4b2fcfedcf6aae9684f95af1c8c.tar.gz
Merge remote-tracking branch 'upstream/master' into fix-1-field-unstructured
Diffstat (limited to 'numpy/lib/tests')
-rw-r--r--numpy/lib/tests/test__iotools.py3
-rw-r--r--numpy/lib/tests/test_arraypad.py573
-rw-r--r--numpy/lib/tests/test_arraysetops.py9
-rw-r--r--numpy/lib/tests/test_format.py16
-rw-r--r--numpy/lib/tests/test_function_base.py226
-rw-r--r--numpy/lib/tests/test_histograms.py10
-rw-r--r--numpy/lib/tests/test_index_tricks.py20
-rw-r--r--numpy/lib/tests/test_io.py43
-rw-r--r--numpy/lib/tests/test_mixins.py11
-rw-r--r--numpy/lib/tests/test_nanfunctions.py28
-rw-r--r--numpy/lib/tests/test_packbits.py63
-rw-r--r--numpy/lib/tests/test_polynomial.py68
-rw-r--r--numpy/lib/tests/test_recfunctions.py6
-rw-r--r--numpy/lib/tests/test_shape_base.py4
-rw-r--r--numpy/lib/tests/test_type_check.py40
-rw-r--r--numpy/lib/tests/test_utils.py46
16 files changed, 782 insertions, 384 deletions
diff --git a/numpy/lib/tests/test__iotools.py b/numpy/lib/tests/test__iotools.py
index b4888f1bd..e04fdc808 100644
--- a/numpy/lib/tests/test__iotools.py
+++ b/numpy/lib/tests/test__iotools.py
@@ -1,6 +1,5 @@
from __future__ import division, absolute_import, print_function
-import sys
import time
from datetime import date
@@ -246,7 +245,7 @@ class TestStringConverter(object):
converter = StringConverter(int, default=0,
missing_values="N/A")
assert_equal(
- converter.missing_values, set(['', 'N/A']))
+ converter.missing_values, {'', 'N/A'})
def test_int64_dtype(self):
"Check that int64 integer types can be specified"
diff --git a/numpy/lib/tests/test_arraypad.py b/numpy/lib/tests/test_arraypad.py
index 20f6e4a1b..b7630cdcd 100644
--- a/numpy/lib/tests/test_arraypad.py
+++ b/numpy/lib/tests/test_arraypad.py
@@ -2,18 +2,31 @@
"""
from __future__ import division, absolute_import, print_function
+from itertools import chain
import pytest
import numpy as np
-from numpy.testing import (assert_array_equal, assert_raises, assert_allclose,
- assert_equal)
-from numpy.lib import pad
+from numpy.testing import assert_array_equal, assert_allclose, assert_equal
from numpy.lib.arraypad import _as_pairs
-class TestAsPairs(object):
+_all_modes = {
+ 'constant': {'constant_values': 0},
+ 'edge': {},
+ 'linear_ramp': {'end_values': 0},
+ 'maximum': {'stat_length': None},
+ 'mean': {'stat_length': None},
+ 'median': {'stat_length': None},
+ 'minimum': {'stat_length': None},
+ 'reflect': {'reflect_type': 'even'},
+ 'symmetric': {'reflect_type': 'even'},
+ 'wrap': {},
+ 'empty': {}
+}
+
+class TestAsPairs(object):
def test_single_value(self):
"""Test casting for a single value."""
expected = np.array([[3, 3]] * 10)
@@ -97,52 +110,31 @@ class TestAsPairs(object):
class TestConditionalShortcuts(object):
- def test_zero_padding_shortcuts(self):
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_zero_padding_shortcuts(self, mode):
test = np.arange(120).reshape(4, 5, 6)
- pad_amt = [(0, 0) for axis in test.shape]
- modes = ['constant',
- 'edge',
- 'linear_ramp',
- 'maximum',
- 'mean',
- 'median',
- 'minimum',
- 'reflect',
- 'symmetric',
- 'wrap',
- ]
- for mode in modes:
- assert_array_equal(test, pad(test, pad_amt, mode=mode))
-
- def test_shallow_statistic_range(self):
+ pad_amt = [(0, 0) for _ in test.shape]
+ assert_array_equal(test, np.pad(test, pad_amt, mode=mode))
+
+ @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',])
+ def test_shallow_statistic_range(self, mode):
test = np.arange(120).reshape(4, 5, 6)
- pad_amt = [(1, 1) for axis in test.shape]
- modes = ['maximum',
- 'mean',
- 'median',
- 'minimum',
- ]
- for mode in modes:
- assert_array_equal(pad(test, pad_amt, mode='edge'),
- pad(test, pad_amt, mode=mode, stat_length=1))
-
- def test_clip_statistic_range(self):
+ pad_amt = [(1, 1) for _ in test.shape]
+ assert_array_equal(np.pad(test, pad_amt, mode='edge'),
+ np.pad(test, pad_amt, mode=mode, stat_length=1))
+
+ @pytest.mark.parametrize("mode", ['maximum', 'mean', 'median', 'minimum',])
+ def test_clip_statistic_range(self, mode):
test = np.arange(30).reshape(5, 6)
- pad_amt = [(3, 3) for axis in test.shape]
- modes = ['maximum',
- 'mean',
- 'median',
- 'minimum',
- ]
- for mode in modes:
- assert_array_equal(pad(test, pad_amt, mode=mode),
- pad(test, pad_amt, mode=mode, stat_length=30))
+ pad_amt = [(3, 3) for _ in test.shape]
+ assert_array_equal(np.pad(test, pad_amt, mode=mode),
+ np.pad(test, pad_amt, mode=mode, stat_length=30))
class TestStatistic(object):
def test_check_mean_stat_length(self):
a = np.arange(100).astype('f')
- a = pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), ))
+ a = np.pad(a, ((25, 20), ), 'mean', stat_length=((2, 3), ))
b = np.array(
[0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
@@ -166,7 +158,7 @@ class TestStatistic(object):
def test_check_maximum_1(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'maximum')
+ a = np.pad(a, (25, 20), 'maximum')
b = np.array(
[99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
@@ -190,7 +182,7 @@ class TestStatistic(object):
def test_check_maximum_2(self):
a = np.arange(100) + 1
- a = pad(a, (25, 20), 'maximum')
+ a = np.pad(a, (25, 20), 'maximum')
b = np.array(
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
@@ -214,7 +206,7 @@ class TestStatistic(object):
def test_check_maximum_stat_length(self):
a = np.arange(100) + 1
- a = pad(a, (25, 20), 'maximum', stat_length=10)
+ a = np.pad(a, (25, 20), 'maximum', stat_length=10)
b = np.array(
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
@@ -238,7 +230,7 @@ class TestStatistic(object):
def test_check_minimum_1(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'minimum')
+ a = np.pad(a, (25, 20), 'minimum')
b = np.array(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
@@ -262,7 +254,7 @@ class TestStatistic(object):
def test_check_minimum_2(self):
a = np.arange(100) + 2
- a = pad(a, (25, 20), 'minimum')
+ a = np.pad(a, (25, 20), 'minimum')
b = np.array(
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
@@ -286,7 +278,7 @@ class TestStatistic(object):
def test_check_minimum_stat_length(self):
a = np.arange(100) + 1
- a = pad(a, (25, 20), 'minimum', stat_length=10)
+ a = np.pad(a, (25, 20), 'minimum', stat_length=10)
b = np.array(
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
@@ -310,7 +302,7 @@ class TestStatistic(object):
def test_check_median(self):
a = np.arange(100).astype('f')
- a = pad(a, (25, 20), 'median')
+ a = np.pad(a, (25, 20), 'median')
b = np.array(
[49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
@@ -334,7 +326,7 @@ class TestStatistic(object):
def test_check_median_01(self):
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
- a = pad(a, 1, 'median')
+ a = np.pad(a, 1, 'median')
b = np.array(
[[4, 4, 5, 4, 4],
@@ -348,7 +340,7 @@ class TestStatistic(object):
def test_check_median_02(self):
a = np.array([[3, 1, 4], [4, 5, 9], [9, 8, 2]])
- a = pad(a.T, 1, 'median').T
+ a = np.pad(a.T, 1, 'median').T
b = np.array(
[[5, 4, 5, 4, 5],
@@ -364,7 +356,7 @@ class TestStatistic(object):
a = np.arange(100).astype('f')
a[1] = 2.
a[97] = 96.
- a = pad(a, (25, 20), 'median', stat_length=(3, 5))
+ a = np.pad(a, (25, 20), 'median', stat_length=(3, 5))
b = np.array(
[ 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
@@ -388,7 +380,7 @@ class TestStatistic(object):
def test_check_mean_shape_one(self):
a = [[4, 5, 6]]
- a = pad(a, (5, 7), 'mean', stat_length=2)
+ a = np.pad(a, (5, 7), 'mean', stat_length=2)
b = np.array(
[[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
[4, 4, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6],
@@ -410,7 +402,7 @@ class TestStatistic(object):
def test_check_mean_2(self):
a = np.arange(100).astype('f')
- a = pad(a, (25, 20), 'mean')
+ a = np.pad(a, (25, 20), 'mean')
b = np.array(
[49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5, 49.5,
@@ -433,7 +425,7 @@ class TestStatistic(object):
assert_array_equal(a, b)
@pytest.mark.parametrize("mode", [
- pytest.param("mean", marks=pytest.mark.xfail(reason="gh-11216")),
+ "mean",
"median",
"minimum",
"maximum"
@@ -446,11 +438,42 @@ class TestStatistic(object):
a = np.pad(a, (1, 1), mode)
assert_equal(a[0], a[-1])
+ @pytest.mark.parametrize("mode", ["mean", "median", "minimum", "maximum"])
+ @pytest.mark.parametrize(
+ "stat_length", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))]
+ )
+ def test_check_negative_stat_length(self, mode, stat_length):
+ arr = np.arange(30).reshape((6, 5))
+ match = "index can't contain negative values"
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, 2, mode, stat_length=stat_length)
+
+ def test_simple_stat_length(self):
+ a = np.arange(30)
+ a = np.reshape(a, (6, 5))
+ a = np.pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
+ b = np.array(
+ [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+
+ [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
+ [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
+ [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
+ [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
+
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
+ [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]]
+ )
+ assert_array_equal(a, b)
+
class TestConstant(object):
def test_check_constant(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'constant', constant_values=(10, 20))
+ a = np.pad(a, (25, 20), 'constant', constant_values=(10, 20))
b = np.array(
[10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
@@ -474,7 +497,7 @@ class TestConstant(object):
def test_check_constant_zeros(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'constant')
+ a = np.pad(a, (25, 20), 'constant')
b = np.array(
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
@@ -500,7 +523,7 @@ class TestConstant(object):
# If input array is int, but constant_values are float, the dtype of
# the array to be padded is kept
arr = np.arange(30).reshape(5, 6)
- test = pad(arr, (1, 2), mode='constant',
+ test = np.pad(arr, (1, 2), mode='constant',
constant_values=1.1)
expected = np.array(
[[ 1, 1, 1, 1, 1, 1, 1, 1, 1],
@@ -521,7 +544,7 @@ class TestConstant(object):
# the array to be padded is kept - here retaining the float constants
arr = np.arange(30).reshape(5, 6)
arr_float = arr.astype(np.float64)
- test = pad(arr_float, ((1, 2), (1, 2)), mode='constant',
+ test = np.pad(arr_float, ((1, 2), (1, 2)), mode='constant',
constant_values=1.1)
expected = np.array(
[[ 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1],
@@ -539,7 +562,7 @@ class TestConstant(object):
def test_check_constant_float3(self):
a = np.arange(100, dtype=float)
- a = pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2))
+ a = np.pad(a, (25, 20), 'constant', constant_values=(-1.1, -1.2))
b = np.array(
[-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1,
-1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1, -1.1,
@@ -563,7 +586,7 @@ class TestConstant(object):
def test_check_constant_odd_pad_amount(self):
arr = np.arange(30).reshape(5, 6)
- test = pad(arr, ((1,), (2,)), mode='constant',
+ test = np.pad(arr, ((1,), (2,)), mode='constant',
constant_values=3)
expected = np.array(
[[ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3],
@@ -620,11 +643,16 @@ class TestConstant(object):
assert_array_equal(arr, expected)
+ def test_pad_empty_dimension(self):
+ arr = np.zeros((3, 0, 2))
+ result = np.pad(arr, [(0,), (2,), (1,)], mode="constant")
+ assert result.shape == (3, 4, 4)
+
class TestLinearRamp(object):
def test_check_simple(self):
a = np.arange(100).astype('f')
- a = pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
+ a = np.pad(a, (25, 20), 'linear_ramp', end_values=(4, 5))
b = np.array(
[4.00, 3.84, 3.68, 3.52, 3.36, 3.20, 3.04, 2.88, 2.72, 2.56,
2.40, 2.24, 2.08, 1.92, 1.76, 1.60, 1.44, 1.28, 1.12, 0.96,
@@ -648,7 +676,7 @@ class TestLinearRamp(object):
def test_check_2d(self):
arr = np.arange(20).reshape(4, 5).astype(np.float64)
- test = pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0))
+ test = np.pad(arr, (2, 2), mode='linear_ramp', end_values=(0, 0))
expected = np.array(
[[0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0.5, 1., 1.5, 2., 1., 0.],
@@ -679,11 +707,19 @@ class TestLinearRamp(object):
])
assert_equal(actual, expected)
+ def test_end_values(self):
+ """Ensure that end values are exact."""
+ a = np.pad(np.ones(10).reshape(2, 5), (223, 123), mode="linear_ramp")
+ assert_equal(a[:, 0], 0.)
+ assert_equal(a[:, -1], 0.)
+ assert_equal(a[0, :], 0.)
+ assert_equal(a[-1, :], 0.)
+
class TestReflect(object):
def test_check_simple(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'reflect')
+ a = np.pad(a, (25, 20), 'reflect')
b = np.array(
[25, 24, 23, 22, 21, 20, 19, 18, 17, 16,
15, 14, 13, 12, 11, 10, 9, 8, 7, 6,
@@ -707,7 +743,7 @@ class TestReflect(object):
def test_check_odd_method(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'reflect', reflect_type='odd')
+ a = np.pad(a, (25, 20), 'reflect', reflect_type='odd')
b = np.array(
[-25, -24, -23, -22, -21, -20, -19, -18, -17, -16,
-15, -14, -13, -12, -11, -10, -9, -8, -7, -6,
@@ -731,7 +767,7 @@ class TestReflect(object):
def test_check_large_pad(self):
a = [[4, 5, 6], [6, 7, 8]]
- a = pad(a, (5, 7), 'reflect')
+ a = np.pad(a, (5, 7), 'reflect')
b = np.array(
[[7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7, 8, 7, 6, 7],
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
@@ -754,7 +790,7 @@ class TestReflect(object):
def test_check_shape(self):
a = [[4, 5, 6]]
- a = pad(a, (5, 7), 'reflect')
+ a = np.pad(a, (5, 7), 'reflect')
b = np.array(
[[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
[5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5, 6, 5, 4, 5],
@@ -775,30 +811,49 @@ class TestReflect(object):
assert_array_equal(a, b)
def test_check_01(self):
- a = pad([1, 2, 3], 2, 'reflect')
+ a = np.pad([1, 2, 3], 2, 'reflect')
b = np.array([3, 2, 1, 2, 3, 2, 1])
assert_array_equal(a, b)
def test_check_02(self):
- a = pad([1, 2, 3], 3, 'reflect')
+ a = np.pad([1, 2, 3], 3, 'reflect')
b = np.array([2, 3, 2, 1, 2, 3, 2, 1, 2])
assert_array_equal(a, b)
def test_check_03(self):
- a = pad([1, 2, 3], 4, 'reflect')
+ a = np.pad([1, 2, 3], 4, 'reflect')
b = np.array([1, 2, 3, 2, 1, 2, 3, 2, 1, 2, 3])
assert_array_equal(a, b)
- def test_check_padding_an_empty_array(self):
- a = pad(np.zeros((0, 3)), ((0,), (1,)), mode='reflect')
- b = np.zeros((0, 5))
- assert_array_equal(a, b)
+
+class TestEmptyArray(object):
+ """Check how padding behaves on arrays with an empty dimension."""
+
+ @pytest.mark.parametrize(
+ # Keep parametrization ordered, otherwise pytest-xdist might believe
+ # that different tests were collected during parallelization
+ "mode", sorted(_all_modes.keys() - {"constant", "empty"})
+ )
+ def test_pad_empty_dimension(self, mode):
+ match = ("can't extend empty axis 0 using modes other than 'constant' "
+ "or 'empty'")
+ with pytest.raises(ValueError, match=match):
+ np.pad([], 4, mode=mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad(np.ndarray(0), 4, mode=mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad(np.zeros((0, 3)), ((1,), (0,)), mode=mode)
+
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_pad_non_empty_dimension(self, mode):
+ result = np.pad(np.ones((2, 0, 2)), ((3,), (0,), (1,)), mode=mode)
+ assert result.shape == (8, 0, 4)
class TestSymmetric(object):
def test_check_simple(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'symmetric')
+ a = np.pad(a, (25, 20), 'symmetric')
b = np.array(
[24, 23, 22, 21, 20, 19, 18, 17, 16, 15,
14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
@@ -822,7 +877,7 @@ class TestSymmetric(object):
def test_check_odd_method(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'symmetric', reflect_type='odd')
+ a = np.pad(a, (25, 20), 'symmetric', reflect_type='odd')
b = np.array(
[-24, -23, -22, -21, -20, -19, -18, -17, -16, -15,
-14, -13, -12, -11, -10, -9, -8, -7, -6, -5,
@@ -846,7 +901,7 @@ class TestSymmetric(object):
def test_check_large_pad(self):
a = [[4, 5, 6], [6, 7, 8]]
- a = pad(a, (5, 7), 'symmetric')
+ a = np.pad(a, (5, 7), 'symmetric')
b = np.array(
[[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
@@ -870,7 +925,7 @@ class TestSymmetric(object):
def test_check_large_pad_odd(self):
a = [[4, 5, 6], [6, 7, 8]]
- a = pad(a, (5, 7), 'symmetric', reflect_type='odd')
+ a = np.pad(a, (5, 7), 'symmetric', reflect_type='odd')
b = np.array(
[[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6],
[-3, -2, -2, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6],
@@ -893,7 +948,7 @@ class TestSymmetric(object):
def test_check_shape(self):
a = [[4, 5, 6]]
- a = pad(a, (5, 7), 'symmetric')
+ a = np.pad(a, (5, 7), 'symmetric')
b = np.array(
[[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
[5, 6, 6, 5, 4, 4, 5, 6, 6, 5, 4, 4, 5, 6, 6],
@@ -914,17 +969,17 @@ class TestSymmetric(object):
assert_array_equal(a, b)
def test_check_01(self):
- a = pad([1, 2, 3], 2, 'symmetric')
+ a = np.pad([1, 2, 3], 2, 'symmetric')
b = np.array([2, 1, 1, 2, 3, 3, 2])
assert_array_equal(a, b)
def test_check_02(self):
- a = pad([1, 2, 3], 3, 'symmetric')
+ a = np.pad([1, 2, 3], 3, 'symmetric')
b = np.array([3, 2, 1, 1, 2, 3, 3, 2, 1])
assert_array_equal(a, b)
def test_check_03(self):
- a = pad([1, 2, 3], 6, 'symmetric')
+ a = np.pad([1, 2, 3], 6, 'symmetric')
b = np.array([1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3])
assert_array_equal(a, b)
@@ -932,7 +987,7 @@ class TestSymmetric(object):
class TestWrap(object):
def test_check_simple(self):
a = np.arange(100)
- a = pad(a, (25, 20), 'wrap')
+ a = np.pad(a, (25, 20), 'wrap')
b = np.array(
[75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
@@ -957,7 +1012,7 @@ class TestWrap(object):
def test_check_large_pad(self):
a = np.arange(12)
a = np.reshape(a, (3, 4))
- a = pad(a, (10, 12), 'wrap')
+ a = np.pad(a, (10, 12), 'wrap')
b = np.array(
[[10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10,
11, 8, 9, 10, 11, 8, 9, 10, 11],
@@ -1015,12 +1070,12 @@ class TestWrap(object):
assert_array_equal(a, b)
def test_check_01(self):
- a = pad([1, 2, 3], 3, 'wrap')
+ a = np.pad([1, 2, 3], 3, 'wrap')
b = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3])
assert_array_equal(a, b)
def test_check_02(self):
- a = pad([1, 2, 3], 4, 'wrap')
+ a = np.pad([1, 2, 3], 4, 'wrap')
b = np.array([3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1])
assert_array_equal(a, b)
@@ -1029,35 +1084,25 @@ class TestWrap(object):
b = np.pad(a, (0, 5), mode="wrap")
assert_array_equal(a, b[:-5, :-5])
+ def test_repeated_wrapping(self):
+ """
+ Check wrapping on each side individually if the wrapped area is longer
+ than the original array.
+ """
+ a = np.arange(5)
+ b = np.pad(a, (12, 0), mode="wrap")
+ assert_array_equal(np.r_[a, a, a, a][3:], b)
-class TestStatLen(object):
- def test_check_simple(self):
- a = np.arange(30)
- a = np.reshape(a, (6, 5))
- a = pad(a, ((2, 3), (3, 2)), mode='mean', stat_length=(3,))
- b = np.array(
- [[6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
-
- [1, 1, 1, 0, 1, 2, 3, 4, 3, 3],
- [6, 6, 6, 5, 6, 7, 8, 9, 8, 8],
- [11, 11, 11, 10, 11, 12, 13, 14, 13, 13],
- [16, 16, 16, 15, 16, 17, 18, 19, 18, 18],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [26, 26, 26, 25, 26, 27, 28, 29, 28, 28],
-
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23],
- [21, 21, 21, 20, 21, 22, 23, 24, 23, 23]]
- )
- assert_array_equal(a, b)
+ a = np.arange(5)
+ b = np.pad(a, (0, 12), mode="wrap")
+ assert_array_equal(np.r_[a, a, a, a][:-3], b)
class TestEdge(object):
def test_check_simple(self):
a = np.arange(12)
a = np.reshape(a, (4, 3))
- a = pad(a, ((2, 3), (3, 2)), 'edge')
+ a = np.pad(a, ((2, 3), (3, 2)), 'edge')
b = np.array(
[[0, 0, 0, 0, 1, 2, 2, 2],
[0, 0, 0, 0, 1, 2, 2, 2],
@@ -1077,56 +1122,123 @@ class TestEdge(object):
# Check a pad_width of the form ((1, 2),).
# Regression test for issue gh-7808.
a = np.array([1, 2, 3])
- padded = pad(a, ((1, 2),), 'edge')
+ padded = np.pad(a, ((1, 2),), 'edge')
expected = np.array([1, 1, 2, 3, 3, 3])
assert_array_equal(padded, expected)
a = np.array([[1, 2, 3], [4, 5, 6]])
- padded = pad(a, ((1, 2),), 'edge')
- expected = pad(a, ((1, 2), (1, 2)), 'edge')
+ padded = np.pad(a, ((1, 2),), 'edge')
+ expected = np.pad(a, ((1, 2), (1, 2)), 'edge')
assert_array_equal(padded, expected)
a = np.arange(24).reshape(2, 3, 4)
- padded = pad(a, ((1, 2),), 'edge')
- expected = pad(a, ((1, 2), (1, 2), (1, 2)), 'edge')
+ padded = np.pad(a, ((1, 2),), 'edge')
+ expected = np.pad(a, ((1, 2), (1, 2), (1, 2)), 'edge')
assert_array_equal(padded, expected)
-class TestZeroPadWidth(object):
- def test_zero_pad_width(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- for pad_width in (0, (0, 0), ((0, 0), (0, 0))):
- assert_array_equal(arr, pad(arr, pad_width, mode='constant'))
+class TestEmpty(object):
+ def test_simple(self):
+ arr = np.arange(24).reshape(4, 6)
+ result = np.pad(arr, [(2, 3), (3, 1)], mode="empty")
+ assert result.shape == (9, 10)
+ assert_equal(arr, result[2:-3, 3:-1])
+ def test_pad_empty_dimension(self):
+ arr = np.zeros((3, 0, 2))
+ result = np.pad(arr, [(0,), (2,), (1,)], mode="empty")
+ assert result.shape == (3, 4, 4)
-class TestLegacyVectorFunction(object):
- def test_legacy_vector_functionality(self):
- def _padwithtens(vector, pad_width, iaxis, kwargs):
- vector[:pad_width[0]] = 10
- vector[-pad_width[1]:] = 10
- return vector
- a = np.arange(6).reshape(2, 3)
- a = pad(a, 2, _padwithtens)
- b = np.array(
- [[10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10],
+def test_legacy_vector_functionality():
+ def _padwithtens(vector, pad_width, iaxis, kwargs):
+ vector[:pad_width[0]] = 10
+ vector[-pad_width[1]:] = 10
- [10, 10, 0, 1, 2, 10, 10],
- [10, 10, 3, 4, 5, 10, 10],
+ a = np.arange(6).reshape(2, 3)
+ a = np.pad(a, 2, _padwithtens)
+ b = np.array(
+ [[10, 10, 10, 10, 10, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10],
- [10, 10, 10, 10, 10, 10, 10]]
- )
- assert_array_equal(a, b)
+ [10, 10, 0, 1, 2, 10, 10],
+ [10, 10, 3, 4, 5, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10],
+ [10, 10, 10, 10, 10, 10, 10]]
+ )
+ assert_array_equal(a, b)
-class TestNdarrayPadWidth(object):
- def test_check_simple(self):
+
+def test_unicode_mode():
+ a = np.pad([1], 2, mode=u'constant')
+ b = np.array([0, 0, 1, 0, 0])
+ assert_array_equal(a, b)
+
+
+@pytest.mark.parametrize("mode", ["edge", "symmetric", "reflect", "wrap"])
+def test_object_input(mode):
+ # Regression test for issue gh-11395.
+ a = np.full((4, 3), fill_value=None)
+ pad_amt = ((2, 3), (3, 2))
+ b = np.full((9, 8), fill_value=None)
+ assert_array_equal(np.pad(a, pad_amt, mode=mode), b)
+
+
+class TestPadWidth(object):
+ @pytest.mark.parametrize("pad_width", [
+ (4, 5, 6, 7),
+ ((1,), (2,), (3,)),
+ ((1, 2), (3, 4), (5, 6)),
+ ((3, 4, 5), (0, 1, 2)),
+ ])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_misshaped_pad_width(self, pad_width, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = "operands could not be broadcast together"
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, pad_width, mode)
+
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_misshaped_pad_width_2(self, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = ("input operand has more dimensions than allowed by the axis "
+ "remapping")
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, (((3,), (4,), (5,)), ((0,), (1,), (2,))), mode)
+
+ @pytest.mark.parametrize(
+ "pad_width", [-2, (-2,), (3, -1), ((5, 2), (-2, 3)), ((-4,), (2,))])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_negative_pad_width(self, pad_width, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = "index can't contain negative values"
+ with pytest.raises(ValueError, match=match):
+ np.pad(arr, pad_width, mode)
+
+ @pytest.mark.parametrize("pad_width", [
+ "3",
+ "word",
+ None,
+ object(),
+ 3.4,
+ ((2, 3, 4), (3, 2)), # dtype=object (tuple)
+ complex(1, -1),
+ ((-2.1, 3), (3, 2)),
+ ])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_bad_type(self, pad_width, mode):
+ arr = np.arange(30).reshape((6, 5))
+ match = "`pad_width` must be of integral type."
+ with pytest.raises(TypeError, match=match):
+ np.pad(arr, pad_width, mode)
+ with pytest.raises(TypeError, match=match):
+ np.pad(arr, np.array(pad_width), mode)
+
+ def test_pad_width_as_ndarray(self):
a = np.arange(12)
a = np.reshape(a, (4, 3))
- a = pad(a, np.array(((2, 3), (3, 2))), 'edge')
+ a = np.pad(a, np.array(((2, 3), (3, 2))), 'edge')
b = np.array(
[[0, 0, 0, 0, 1, 2, 2, 2],
[0, 0, 0, 0, 1, 2, 2, 2],
@@ -1142,121 +1254,68 @@ class TestNdarrayPadWidth(object):
)
assert_array_equal(a, b)
-
-class TestUnicodeInput(object):
- def test_unicode_mode(self):
- constant_mode = u'constant'
- a = np.pad([1], 2, mode=constant_mode)
- b = np.array([0, 0, 1, 0, 0])
- assert_array_equal(a, b)
-
-
-class TestObjectInput(object):
- def test_object_input(self):
- # Regression test for issue gh-11395.
- a = np.full((4, 3), None)
- pad_amt = ((2, 3), (3, 2))
- b = np.full((9, 8), None)
- modes = ['edge',
- 'symmetric',
- 'reflect',
- 'wrap',
- ]
- for mode in modes:
- assert_array_equal(pad(a, pad_amt, mode=mode), b)
-
-
-class TestValueError1(object):
- def test_check_simple(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(ValueError, pad, arr, ((2, 3), (3, 2), (4, 5)),
- **kwargs)
-
- def test_check_negative_stat_length(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(-3, ))
- assert_raises(ValueError, pad, arr, ((2, 3), (3, 2)),
- **kwargs)
-
- def test_check_negative_pad_width(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
- **kwargs)
-
- def test_check_empty_array(self):
- assert_raises(ValueError, pad, [], 4, mode='reflect')
- assert_raises(ValueError, pad, np.ndarray(0), 4, mode='reflect')
- assert_raises(ValueError, pad, np.zeros((0, 3)), ((1,), (0,)),
- mode='reflect')
-
-
-class TestValueError2(object):
- def test_check_negative_pad_amount(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(ValueError, pad, arr, ((-2, 3), (3, 2)),
- **kwargs)
-
-
-class TestValueError3(object):
- def test_check_kwarg_not_allowed(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(ValueError, pad, arr, 4, mode='mean',
- reflect_type='odd')
-
- def test_mode_not_set(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(TypeError, pad, arr, 4)
-
- def test_malformed_pad_amount(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(ValueError, pad, arr, (4, 5, 6, 7), mode='constant')
-
- def test_malformed_pad_amount2(self):
- arr = np.arange(30).reshape(5, 6)
- assert_raises(ValueError, pad, arr, ((3, 4, 5), (0, 1, 2)),
- mode='constant')
-
- def test_pad_too_many_axes(self):
- arr = np.arange(30).reshape(5, 6)
-
- # Attempt to pad using a 3D array equivalent
- bad_shape = (((3,), (4,), (5,)), ((0,), (1,), (2,)))
- assert_raises(ValueError, pad, arr, bad_shape,
- mode='constant')
-
-
-class TestTypeError1(object):
- def test_float(self):
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, ((-2.1, 3), (3, 2)))
- assert_raises(TypeError, pad, arr, np.array(((-2.1, 3), (3, 2))))
-
- def test_str(self):
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, 'foo')
- assert_raises(TypeError, pad, arr, np.array('foo'))
-
- def test_object(self):
- class FooBar(object):
- pass
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, FooBar())
-
- def test_complex(self):
- arr = np.arange(30)
- assert_raises(TypeError, pad, arr, complex(1, -1))
- assert_raises(TypeError, pad, arr, np.array(complex(1, -1)))
-
- def test_check_wrong_pad_amount(self):
- arr = np.arange(30)
- arr = np.reshape(arr, (6, 5))
- kwargs = dict(mode='mean', stat_length=(3, ))
- assert_raises(TypeError, pad, arr, ((2, 3, 4), (3, 2)),
- **kwargs)
+ @pytest.mark.parametrize("pad_width", [0, (0, 0), ((0, 0), (0, 0))])
+ @pytest.mark.parametrize("mode", _all_modes.keys())
+ def test_zero_pad_width(self, pad_width, mode):
+ arr = np.arange(30).reshape(6, 5)
+ assert_array_equal(arr, np.pad(arr, pad_width, mode=mode))
+
+
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_kwargs(mode):
+ """Test behavior of pad's kwargs for the given mode."""
+ allowed = _all_modes[mode]
+ not_allowed = {}
+ for kwargs in _all_modes.values():
+ if kwargs != allowed:
+ not_allowed.update(kwargs)
+ # Test if allowed keyword arguments pass
+ np.pad([1, 2, 3], 1, mode, **allowed)
+ # Test if prohibited keyword arguments of other modes raise an error
+ for key, value in not_allowed.items():
+ match = "unsupported keyword arguments for mode '{}'".format(mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1, 2, 3], 1, mode, **{key: value})
+
+
+def test_constant_zero_default():
+ arr = np.array([1, 1])
+ assert_array_equal(np.pad(arr, 2), [0, 0, 1, 1, 0, 0])
+
+
+@pytest.mark.parametrize("mode", [1, "const", object(), None, True, False])
+def test_unsupported_mode(mode):
+ match= "mode '{}' is not supported".format(mode)
+ with pytest.raises(ValueError, match=match):
+ np.pad([1, 2, 3], 4, mode=mode)
+
+
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_non_contiguous_array(mode):
+ arr = np.arange(24).reshape(4, 6)[::2, ::2]
+ result = np.pad(arr, (2, 3), mode)
+ assert result.shape == (7, 8)
+ assert_equal(result[2:-3, 2:-3], arr)
+
+
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_memory_layout_persistence(mode):
+ """Test if C and F order is preserved for all pad modes."""
+ x = np.ones((5, 10), order='C')
+ assert np.pad(x, 5, mode).flags["C_CONTIGUOUS"]
+ x = np.ones((5, 10), order='F')
+ assert np.pad(x, 5, mode).flags["F_CONTIGUOUS"]
+
+
+@pytest.mark.parametrize("dtype", chain(
+ # Skip "other" dtypes as they are not supported by all modes
+ np.sctypes["int"],
+ np.sctypes["uint"],
+ np.sctypes["float"],
+ np.sctypes["complex"]
+))
+@pytest.mark.parametrize("mode", _all_modes.keys())
+def test_dtype_persistence(dtype, mode):
+ arr = np.zeros((3, 2, 1), dtype=dtype)
+ result = np.pad(arr, 1, mode=mode)
+ assert result.dtype == dtype
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
index fef06ba53..93d4b279f 100644
--- a/numpy/lib/tests/test_arraysetops.py
+++ b/numpy/lib/tests/test_arraysetops.py
@@ -4,7 +4,6 @@
from __future__ import division, absolute_import, print_function
import numpy as np
-import sys
from numpy.testing import (assert_array_equal, assert_equal,
assert_raises, assert_raises_regex)
@@ -137,8 +136,8 @@ class TestSetOps(object):
np.nan),
# should fail because attempting
# to downcast to smaller int type:
- (np.array([1, 2, 3], dtype=np.int32),
- np.array([5, 7, 2], dtype=np.int64),
+ (np.array([1, 2, 3], dtype=np.int16),
+ np.array([5, 1<<20, 2], dtype=np.int32),
None),
# should fail because attempting to cast
# two special floating point values
@@ -153,8 +152,8 @@ class TestSetOps(object):
# specifically, raise an appropriate
# Exception when attempting to append or
# prepend with an incompatible type
- msg = 'must be compatible'
- with assert_raises_regex(TypeError, msg):
+ msg = 'cannot convert'
+ with assert_raises_regex(ValueError, msg):
ediff1d(ary=ary,
to_end=append,
to_begin=prepend)
diff --git a/numpy/lib/tests/test_format.py b/numpy/lib/tests/test_format.py
index 0d7c7f7e0..2ebd483d5 100644
--- a/numpy/lib/tests/test_format.py
+++ b/numpy/lib/tests/test_format.py
@@ -287,7 +287,6 @@ from io import BytesIO
import numpy as np
from numpy.testing import (
assert_, assert_array_equal, assert_raises, assert_raises_regex,
- raises
)
from numpy.lib import format
@@ -427,7 +426,7 @@ def roundtrip(arr):
f = BytesIO()
format.write_array(f, arr)
f2 = BytesIO(f.getvalue())
- arr2 = format.read_array(f2)
+ arr2 = format.read_array(f2, allow_pickle=True)
return arr2
@@ -577,7 +576,7 @@ def test_pickle_python2_python3():
path = os.path.join(data_dir, fname)
for encoding in ['bytes', 'latin1']:
- data_f = np.load(path, encoding=encoding)
+ data_f = np.load(path, allow_pickle=True, encoding=encoding)
if fname.endswith('.npz'):
data = data_f['x']
data_f.close()
@@ -599,16 +598,19 @@ def test_pickle_python2_python3():
if sys.version_info[0] >= 3:
if fname.startswith('py2'):
if fname.endswith('.npz'):
- data = np.load(path)
+ data = np.load(path, allow_pickle=True)
assert_raises(UnicodeError, data.__getitem__, 'x')
data.close()
- data = np.load(path, fix_imports=False, encoding='latin1')
+ data = np.load(path, allow_pickle=True, fix_imports=False,
+ encoding='latin1')
assert_raises(ImportError, data.__getitem__, 'x')
data.close()
else:
- assert_raises(UnicodeError, np.load, path)
+ assert_raises(UnicodeError, np.load, path,
+ allow_pickle=True)
assert_raises(ImportError, np.load, path,
- encoding='latin1', fix_imports=False)
+ allow_pickle=True, fix_imports=False,
+ encoding='latin1')
def test_pickle_disallow():
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 0c789e012..e2c24a123 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -4,28 +4,28 @@ import operator
import warnings
import sys
import decimal
+import types
import pytest
import numpy as np
from numpy import ma
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_array_almost_equal, assert_raises, assert_allclose,
- assert_array_max_ulp, assert_warns, assert_raises_regex, suppress_warnings,
- HAS_REFCOUNT,
+ assert_array_almost_equal, assert_raises, assert_allclose, IS_PYPY,
+ assert_warns, assert_raises_regex, suppress_warnings, HAS_REFCOUNT,
)
import numpy.lib.function_base as nfb
from numpy.random import rand
from numpy.lib import (
add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov,
delete, diff, digitize, extract, flipud, gradient, hamming, hanning,
- histogram, histogramdd, i0, insert, interp, kaiser, meshgrid, msort,
- piecewise, place, rot90, select, setxor1d, sinc, split, trapz, trim_zeros,
- unwrap, unique, vectorize
+ i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90,
+ select, setxor1d, sinc, trapz, trim_zeros, unwrap, unique, vectorize
)
from numpy.compat import long
+PY2 = sys.version_info[0] == 2
def get_mat(n):
data = np.arange(n)
@@ -33,6 +33,17 @@ def get_mat(n):
return data
+def _make_complex(real, imag):
+ """
+ Like real + 1j * imag, but behaves as expected when imag contains non-finite
+ values
+ """
+ ret = np.zeros(np.broadcast(real, imag).shape, np.complex_)
+ ret.real = real
+ ret.imag = imag
+ return ret
+
+
class TestRot90(object):
def test_basic(self):
assert_raises(ValueError, rot90, np.ones(4))
@@ -355,9 +366,9 @@ class TestAverage(object):
assert_equal(type(np.average(a, weights=w)), subclass)
def test_upcasting(self):
- types = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'),
+ typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'),
('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')]
- for at, wt, rt in types:
+ for at, wt, rt in typs:
a = np.array([[1,2],[3,4]], dtype=at)
w = np.array([[1,2],[3,4]], dtype=wt)
assert_equal(np.average(a, weights=w).dtype, np.dtype(rt))
@@ -1500,6 +1511,49 @@ class TestVectorize(object):
f(x)
+class TestLeaks(object):
+ class A(object):
+ iters = 20
+
+ def bound(self, *args):
+ return 0
+
+ @staticmethod
+ def unbound(*args):
+ return 0
+
+ @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
+ @pytest.mark.parametrize('name, incr', [
+ ('bound', A.iters),
+ ('unbound', 0),
+ ])
+ def test_frompyfunc_leaks(self, name, incr):
+ # exposed in gh-11867 as np.vectorized, but the problem stems from
+ # frompyfunc.
+ # class.attribute = np.frompyfunc(<method>) creates a
+ # reference cycle if <method> is a bound class method. It requires a
+ # gc collection cycle to break the cycle (on CPython 3)
+ import gc
+ A_func = getattr(self.A, name)
+ gc.disable()
+ try:
+ refcount = sys.getrefcount(A_func)
+ for i in range(self.A.iters):
+ a = self.A()
+ a.f = np.frompyfunc(getattr(a, name), 1, 1)
+ out = a.f(np.arange(10))
+ a = None
+ if PY2:
+ assert_equal(sys.getrefcount(A_func), refcount)
+ else:
+ # A.func is part of a reference cycle if incr is non-zero
+ assert_equal(sys.getrefcount(A_func), refcount + incr)
+ for i in range(5):
+ gc.collect()
+ assert_equal(sys.getrefcount(A_func), refcount)
+ finally:
+ gc.enable()
+
class TestDigitize(object):
def test_forward(self):
@@ -2311,7 +2365,7 @@ class TestInterp(object):
x0 = np.nan
assert_almost_equal(np.interp(x0, x, y), x0)
- def test_non_finite_behavior(self):
+ def test_non_finite_behavior_exact_x(self):
x = [1, 2, 2.5, 3, 4]
xp = [1, 2, 3, 4]
fp = [1, 2, np.inf, 4]
@@ -2319,6 +2373,64 @@ class TestInterp(object):
fp = [1, 2, np.nan, 4]
assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4])
+ @pytest.fixture(params=[
+ lambda x: np.float_(x),
+ lambda x: _make_complex(x, 0),
+ lambda x: _make_complex(0, x),
+ lambda x: _make_complex(x, np.multiply(x, -2))
+ ], ids=[
+ 'real',
+ 'complex-real',
+ 'complex-imag',
+ 'complex-both'
+ ])
+ def sc(self, request):
+ """ scale function used by the below tests """
+ return request.param
+
+ def test_non_finite_any_nan(self, sc):
+ """ test that nans are propagated """
+ assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan))
+
+ def test_non_finite_inf(self, sc):
+ """ Test that interp between opposite infs gives nan """
+ assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan))
+
+ # unless the y values are equal
+ assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10))
+
+ def test_non_finite_half_inf_xf(self, sc):
+ """ Test that interp where both axes have a bound at inf gives nan """
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan))
+
+ def test_non_finite_half_inf_x(self, sc):
+ """ Test interp where the x axis has a bound at inf """
+ assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10))
+ assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10))
+ assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0))
+ assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0))
+
+ def test_non_finite_half_inf_f(self, sc):
+ """ Test interp where the f axis has a bound at inf """
+ assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf))
+ assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf))
+
def test_complex_interp(self):
# test complex interpolation
x = np.linspace(0, 1, 5)
@@ -2393,11 +2505,8 @@ class TestPercentile(object):
assert_equal(np.percentile(x, 100), 3.5)
assert_equal(np.percentile(x, 50), 1.75)
x[1] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(x, 0), np.nan)
- assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.percentile(x, 0), np.nan)
+ assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan)
def test_api(self):
d = np.ones(5)
@@ -2735,85 +2844,63 @@ class TestPercentile(object):
def test_nan_behavior(self):
a = np.arange(24, dtype=float)
a[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3, axis=0), np.nan)
- assert_equal(np.percentile(a, [0.3, 0.6], axis=0),
- np.array([np.nan] * 2))
- assert_(w[0].category is RuntimeWarning)
- assert_(w[1].category is RuntimeWarning)
- assert_(w[2].category is RuntimeWarning)
+ assert_equal(np.percentile(a, 0.3), np.nan)
+ assert_equal(np.percentile(a, 0.3, axis=0), np.nan)
+ assert_equal(np.percentile(a, [0.3, 0.6], axis=0),
+ np.array([np.nan] * 2))
a = np.arange(24, dtype=float).reshape(2, 3, 4)
a[1, 2, 3] = np.nan
a[1, 1, 2] = np.nan
# no axis
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3), np.nan)
- assert_equal(np.percentile(a, 0.3).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.percentile(a, 0.3), np.nan)
+ assert_equal(np.percentile(a, 0.3).ndim, 0)
# axis0 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0)
b[2, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, 0), b)
+ assert_equal(np.percentile(a, 0.3, 0), b)
# axis0 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], 0)
b[:, 2, 3] = np.nan
b[:, 1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], 0), b)
# axis1 zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1)
b[1, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, 1), b)
+ assert_equal(np.percentile(a, 0.3, 1), b)
# axis1 not zerod
b = np.percentile(
np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1)
b[:, 1, 3] = np.nan
b[:, 1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], 1), b)
# axis02 zerod
b = np.percentile(
np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2))
b[1] = np.nan
b[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, 0.3, (0, 2)), b)
+ assert_equal(np.percentile(a, 0.3, (0, 2)), b)
# axis02 not zerod
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2))
b[:, 1] = np.nan
b[:, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
+ assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b)
# axis02 not zerod with nearest interpolation
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4),
[0.3, 0.6], (0, 2), interpolation='nearest')
b[:, 1] = np.nan
b[:, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.percentile(
- a, [0.3, 0.6], (0, 2), interpolation='nearest'), b)
+ assert_equal(np.percentile(
+ a, [0.3, 0.6], (0, 2), interpolation='nearest'), b)
class TestQuantile(object):
@@ -2860,10 +2947,7 @@ class TestMedian(object):
# check array scalar result
assert_equal(np.median(a).ndim, 0)
a[1] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.median(a).ndim, 0)
def test_axis_keyword(self):
a3 = np.array([[2, 3],
@@ -2962,58 +3046,43 @@ class TestMedian(object):
def test_nan_behavior(self):
a = np.arange(24, dtype=float)
a[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a, axis=0), np.nan)
- assert_(w[0].category is RuntimeWarning)
- assert_(w[1].category is RuntimeWarning)
+ assert_equal(np.median(a), np.nan)
+ assert_equal(np.median(a, axis=0), np.nan)
a = np.arange(24, dtype=float).reshape(2, 3, 4)
a[1, 2, 3] = np.nan
a[1, 1, 2] = np.nan
# no axis
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a), np.nan)
- assert_equal(np.median(a).ndim, 0)
- assert_(w[0].category is RuntimeWarning)
+ assert_equal(np.median(a), np.nan)
+ assert_equal(np.median(a).ndim, 0)
# axis0
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0)
b[2, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, 0), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, 0), b)
# axis1
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1)
b[1, 3] = np.nan
b[1, 2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, 1), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, 1), b)
# axis02
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2))
b[1] = np.nan
b[2] = np.nan
- with warnings.catch_warnings(record=True) as w:
- warnings.filterwarnings('always', '', RuntimeWarning)
- assert_equal(np.median(a, (0, 2)), b)
- assert_equal(len(w), 1)
+ assert_equal(np.median(a, (0, 2)), b)
def test_empty(self):
- # empty arrays
+ # mean(empty array) emits two warnings: empty slice and divide by 0
a = np.array([], dtype=float)
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a), np.nan)
assert_(w[0].category is RuntimeWarning)
+ assert_equal(len(w), 2)
# multiple dimensions
a = np.array([], dtype=float, ndmin=3)
@@ -3108,6 +3177,7 @@ class TestAdd_newdoc_ufunc(object):
class TestAdd_newdoc(object):
@pytest.mark.skipif(sys.flags.optimize == 2, reason="Python running -OO")
+ @pytest.mark.xfail(IS_PYPY, reason="PyPy does not modify tp_doc")
def test_add_doc(self):
# test np.add_newdoc
tgt = "Current flat index into the array."
diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py
index 49c0d9720..c96b01d42 100644
--- a/numpy/lib/tests/test_histograms.py
+++ b/numpy/lib/tests/test_histograms.py
@@ -6,7 +6,7 @@ from numpy.lib.histograms import histogram, histogramdd, histogram_bin_edges
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
assert_array_almost_equal, assert_raises, assert_allclose,
- assert_array_max_ulp, assert_warns, assert_raises_regex, suppress_warnings,
+ assert_array_max_ulp, assert_raises_regex, suppress_warnings,
)
@@ -289,13 +289,13 @@ class TestHistogram(object):
def test_object_array_of_0d(self):
# gh-7864
assert_raises(ValueError,
- histogram, [np.array([0.4]) for i in range(10)] + [-np.inf])
+ histogram, [np.array(0.4) for i in range(10)] + [-np.inf])
assert_raises(ValueError,
- histogram, [np.array([0.4]) for i in range(10)] + [np.inf])
+ histogram, [np.array(0.4) for i in range(10)] + [np.inf])
# these should not crash
- np.histogram([np.array([0.5]) for i in range(10)] + [.500000000000001])
- np.histogram([np.array([0.5]) for i in range(10)] + [.5])
+ np.histogram([np.array(0.5) for i in range(10)] + [.500000000000001])
+ np.histogram([np.array(0.5) for i in range(10)] + [.5])
def test_some_nan_values(self):
# gh-7503
diff --git a/numpy/lib/tests/test_index_tricks.py b/numpy/lib/tests/test_index_tricks.py
index 3246f68ff..028bba37d 100644
--- a/numpy/lib/tests/test_index_tricks.py
+++ b/numpy/lib/tests/test_index_tricks.py
@@ -77,6 +77,26 @@ class TestRavelUnravelIndex(object):
[[3, 6, 6], [4, 5, 1]])
assert_equal(np.unravel_index(1621, (6, 7, 8, 9)), [3, 1, 4, 1])
+ def test_empty_indices(self):
+ msg1 = 'indices must be integral: the provided empty sequence was'
+ msg2 = 'only int indices permitted'
+ assert_raises_regex(TypeError, msg1, np.unravel_index, [], (10, 3, 5))
+ assert_raises_regex(TypeError, msg1, np.unravel_index, (), (10, 3, 5))
+ assert_raises_regex(TypeError, msg2, np.unravel_index, np.array([]),
+ (10, 3, 5))
+ assert_equal(np.unravel_index(np.array([],dtype=int), (10, 3, 5)),
+ [[], [], []])
+ assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], []),
+ (10, 3))
+ assert_raises_regex(TypeError, msg1, np.ravel_multi_index, ([], ['abc']),
+ (10, 3))
+ assert_raises_regex(TypeError, msg2, np.ravel_multi_index,
+ (np.array([]), np.array([])), (5, 3))
+ assert_equal(np.ravel_multi_index(
+ (np.array([], dtype=int), np.array([], dtype=int)), (5, 3)), [])
+ assert_equal(np.ravel_multi_index(np.array([[], []], dtype=int),
+ (5, 3)), [])
+
def test_big_indices(self):
# ravel_multi_index for big indices (issue #7546)
if np.intp == np.int64:
diff --git a/numpy/lib/tests/test_io.py b/numpy/lib/tests/test_io.py
index b746937b9..9d6111e37 100644
--- a/numpy/lib/tests/test_io.py
+++ b/numpy/lib/tests/test_io.py
@@ -6,7 +6,6 @@ import os
import threading
import time
import warnings
-import gc
import io
import re
import pytest
@@ -18,12 +17,12 @@ import locale
import numpy as np
import numpy.ma as ma
from numpy.lib._iotools import ConverterError, ConversionWarning
-from numpy.compat import asbytes, bytes, unicode, Path
+from numpy.compat import asbytes, bytes, Path
from numpy.ma.testutils import assert_equal
from numpy.testing import (
assert_warns, assert_, assert_raises_regex, assert_raises,
assert_allclose, assert_array_equal, temppath, tempdir, IS_PYPY,
- HAS_REFCOUNT, suppress_warnings, assert_no_gc_cycles,
+ HAS_REFCOUNT, suppress_warnings, assert_no_gc_cycles, assert_no_warnings
)
@@ -88,7 +87,7 @@ class RoundtripTest(object):
"""
save_kwds = kwargs.get('save_kwds', {})
- load_kwds = kwargs.get('load_kwds', {})
+ load_kwds = kwargs.get('load_kwds', {"allow_pickle": True})
file_on_disk = kwargs.get('file_on_disk', False)
if file_on_disk:
@@ -348,13 +347,33 @@ class TestSaveTxt(object):
assert_raises(ValueError, np.savetxt, c, np.array(1))
assert_raises(ValueError, np.savetxt, c, np.array([[[1], [2]]]))
- def test_record(self):
+ def test_structured(self):
a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])
c = BytesIO()
np.savetxt(c, a, fmt='%d')
c.seek(0)
assert_equal(c.readlines(), [b'1 2\n', b'3 4\n'])
+ def test_structured_padded(self):
+ # gh-13297
+ a = np.array([(1, 2, 3),(4, 5, 6)], dtype=[
+ ('foo', 'i4'), ('bar', 'i4'), ('baz', 'i4')
+ ])
+ c = BytesIO()
+ np.savetxt(c, a[['foo', 'baz']], fmt='%d')
+ c.seek(0)
+ assert_equal(c.readlines(), [b'1 3\n', b'4 6\n'])
+
+ @pytest.mark.skipif(Path is None, reason="No pathlib.Path")
+ def test_multifield_view(self):
+ a = np.ones(1, dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'f4')])
+ v = a[['x', 'z']]
+ with temppath(suffix='.npy') as path:
+ path = Path(path)
+ np.save(path, v)
+ data = np.load(path)
+ assert_array_equal(data, v)
+
def test_delimiter(self):
a = np.array([[1., 2.], [3., 4.]])
c = BytesIO()
@@ -1372,6 +1391,19 @@ M 33 21.99
control = np.array([(1, 2), (3, 4)], dtype=[('col1', int), ('col2', int)])
assert_equal(test, control)
+ def test_file_is_closed_on_error(self):
+ # gh-13200
+ with tempdir() as tmpdir:
+ fpath = os.path.join(tmpdir, "test.csv")
+ with open(fpath, "wb") as f:
+ f.write(u'\N{GREEK PI SYMBOL}'.encode('utf8'))
+
+ # ResourceWarnings are emitted from a destructor, so won't be
+ # detected by regular propagation to errors.
+ with assert_no_warnings():
+ with pytest.raises(UnicodeDecodeError):
+ np.genfromtxt(fpath, encoding="ascii")
+
def test_autonames_and_usecols(self):
# Tests names and usecols
data = TextIO('A B C D\n aaaa 121 45 9.1')
@@ -2049,7 +2081,6 @@ M 33 21.99
def test_utf8_file(self):
utf8 = b"\xcf\x96"
- latin1 = b"\xf6\xfc\xf6"
with temppath() as path:
with open(path, "wb") as f:
f.write((b"test1,testNonethe" + utf8 + b",test3\n") * 2)
diff --git a/numpy/lib/tests/test_mixins.py b/numpy/lib/tests/test_mixins.py
index f2d915502..3dd5346b6 100644
--- a/numpy/lib/tests/test_mixins.py
+++ b/numpy/lib/tests/test_mixins.py
@@ -199,6 +199,17 @@ class TestNDArrayOperatorsMixin(object):
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
+ def test_matmul(self):
+ array = np.array([1, 2], dtype=np.float64)
+ array_like = ArrayLike(array)
+ expected = ArrayLike(np.float64(5))
+ _assert_equal_type_and_value(expected, np.matmul(array_like, array))
+ if not PY2:
+ _assert_equal_type_and_value(
+ expected, operator.matmul(array_like, array))
+ _assert_equal_type_and_value(
+ expected, operator.matmul(array, array_like))
+
def test_ufunc_at(self):
array = ArrayLike(np.array([1, 2, 3, 4]))
assert_(np.negative.at(array, np.array([0, 1])) is None)
diff --git a/numpy/lib/tests/test_nanfunctions.py b/numpy/lib/tests/test_nanfunctions.py
index 504372faf..b7261c63f 100644
--- a/numpy/lib/tests/test_nanfunctions.py
+++ b/numpy/lib/tests/test_nanfunctions.py
@@ -1,8 +1,10 @@
from __future__ import division, absolute_import, print_function
import warnings
+import pytest
import numpy as np
+from numpy.lib.nanfunctions import _nan_mask
from numpy.testing import (
assert_, assert_equal, assert_almost_equal, assert_no_warnings,
assert_raises, assert_array_equal, suppress_warnings
@@ -925,3 +927,29 @@ class TestNanFunctions_Quantile(object):
p = p.tolist()
np.nanquantile(np.arange(100.), p, interpolation="midpoint")
assert_array_equal(p, p0)
+
+@pytest.mark.parametrize("arr, expected", [
+ # array of floats with some nans
+ (np.array([np.nan, 5.0, np.nan, np.inf]),
+ np.array([False, True, False, True])),
+ # int64 array that can't possibly have nans
+ (np.array([1, 5, 7, 9], dtype=np.int64),
+ True),
+ # bool array that can't possibly have nans
+ (np.array([False, True, False, True]),
+ True),
+ # 2-D complex array with nans
+ (np.array([[np.nan, 5.0],
+ [np.nan, np.inf]], dtype=np.complex64),
+ np.array([[False, True],
+ [False, True]])),
+ ])
+def test__nan_mask(arr, expected):
+ for out in [None, np.empty(arr.shape, dtype=np.bool_)]:
+ actual = _nan_mask(arr, out=out)
+ assert_equal(actual, expected)
+ # the above won't distinguish between True proper
+ # and an array of True values; we want True proper
+ # for types that can't possibly contain NaN
+ if type(expected) is not np.ndarray:
+ assert actual is True
diff --git a/numpy/lib/tests/test_packbits.py b/numpy/lib/tests/test_packbits.py
index fde5c37f2..00d5ca827 100644
--- a/numpy/lib/tests/test_packbits.py
+++ b/numpy/lib/tests/test_packbits.py
@@ -266,3 +266,66 @@ def test_unpackbits_large():
assert_array_equal(np.packbits(np.unpackbits(d, axis=1), axis=1), d)
d = d.T.copy()
assert_array_equal(np.packbits(np.unpackbits(d, axis=0), axis=0), d)
+
+
+def test_unpackbits_count():
+ # test complete invertibility of packbits and unpackbits with count
+ x = np.array([
+ [1, 0, 1, 0, 0, 1, 0],
+ [0, 1, 1, 1, 0, 0, 0],
+ [0, 0, 1, 0, 0, 1, 1],
+ [1, 1, 0, 0, 0, 1, 1],
+ [1, 0, 1, 0, 1, 0, 1],
+ [0, 0, 1, 1, 1, 0, 0],
+ [0, 1, 0, 1, 0, 1, 0],
+ ], dtype=np.uint8)
+
+ padded1 = np.zeros(57, dtype=np.uint8)
+ padded1[:49] = x.ravel()
+
+ packed = np.packbits(x)
+ for count in range(58):
+ unpacked = np.unpackbits(packed, count=count)
+ assert_equal(unpacked.dtype, np.uint8)
+ assert_array_equal(unpacked, padded1[:count])
+ for count in range(-1, -57, -1):
+ unpacked = np.unpackbits(packed, count=count)
+ assert_equal(unpacked.dtype, np.uint8)
+ # count -1 because padded1 has 57 instead of 56 elements
+ assert_array_equal(unpacked, padded1[:count-1])
+ for kwargs in [{}, {'count': None}]:
+ unpacked = np.unpackbits(packed, **kwargs)
+ assert_equal(unpacked.dtype, np.uint8)
+ assert_array_equal(unpacked, padded1[:-1])
+ assert_raises(ValueError, np.unpackbits, packed, count=-57)
+
+ padded2 = np.zeros((9, 9), dtype=np.uint8)
+ padded2[:7, :7] = x
+
+ packed0 = np.packbits(x, axis=0)
+ packed1 = np.packbits(x, axis=1)
+ for count in range(10):
+ unpacked0 = np.unpackbits(packed0, axis=0, count=count)
+ assert_equal(unpacked0.dtype, np.uint8)
+ assert_array_equal(unpacked0, padded2[:count, :x.shape[1]])
+ unpacked1 = np.unpackbits(packed1, axis=1, count=count)
+ assert_equal(unpacked1.dtype, np.uint8)
+ assert_array_equal(unpacked1, padded2[:x.shape[1], :count])
+ for count in range(-1, -9, -1):
+ unpacked0 = np.unpackbits(packed0, axis=0, count=count)
+ assert_equal(unpacked0.dtype, np.uint8)
+ # count -1 because one extra zero of padding
+ assert_array_equal(unpacked0, padded2[:count-1, :x.shape[1]])
+ unpacked1 = np.unpackbits(packed1, axis=1, count=count)
+ assert_equal(unpacked1.dtype, np.uint8)
+ assert_array_equal(unpacked1, padded2[:x.shape[0], :count-1])
+ for kwargs in [{}, {'count': None}]:
+ unpacked0 = np.unpackbits(packed0, axis=0, **kwargs)
+ assert_equal(unpacked0.dtype, np.uint8)
+ assert_array_equal(unpacked0, padded2[:-1, :x.shape[1]])
+ unpacked1 = np.unpackbits(packed1, axis=1, **kwargs)
+ assert_equal(unpacked1.dtype, np.uint8)
+ assert_array_equal(unpacked1, padded2[:x.shape[0], :-1])
+ assert_raises(ValueError, np.unpackbits, packed0, axis=0, count=-9)
+ assert_raises(ValueError, np.unpackbits, packed1, axis=1, count=-9)
+
diff --git a/numpy/lib/tests/test_polynomial.py b/numpy/lib/tests/test_polynomial.py
index 9f7c117a2..89759bd83 100644
--- a/numpy/lib/tests/test_polynomial.py
+++ b/numpy/lib/tests/test_polynomial.py
@@ -3,7 +3,7 @@ from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_array_equal, assert_almost_equal,
- assert_array_almost_equal, assert_raises
+ assert_array_almost_equal, assert_raises, assert_allclose
)
@@ -122,27 +122,34 @@ class TestPolynomial(object):
weights = np.arange(8, 1, -1)**2/7.0
# Check exception when too few points for variance estimate. Note that
- # the Bayesian estimate requires the number of data points to exceed
- # degree + 3.
+ # the estimate requires the number of data points to exceed
+ # degree + 1
assert_raises(ValueError, np.polyfit,
- [0, 1, 3], [0, 1, 3], deg=0, cov=True)
+ [1], [1], deg=0, cov=True)
# check 1D case
m, cov = np.polyfit(x, y+err, 2, cov=True)
est = [3.8571, 0.2857, 1.619]
assert_almost_equal(est, m, decimal=4)
- val0 = [[2.9388, -5.8776, 1.6327],
- [-5.8776, 12.7347, -4.2449],
- [1.6327, -4.2449, 2.3220]]
+ val0 = [[ 1.4694, -2.9388, 0.8163],
+ [-2.9388, 6.3673, -2.1224],
+ [ 0.8163, -2.1224, 1.161 ]]
assert_almost_equal(val0, cov, decimal=4)
m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True)
assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4)
- val = [[8.7929, -10.0103, 0.9756],
- [-10.0103, 13.6134, -1.8178],
- [0.9756, -1.8178, 0.6674]]
+ val = [[ 4.3964, -5.0052, 0.4878],
+ [-5.0052, 6.8067, -0.9089],
+ [ 0.4878, -0.9089, 0.3337]]
assert_almost_equal(val, cov2, decimal=4)
+ m3, cov3 = np.polyfit(x, y+err, 2, w=weights, cov="unscaled")
+ assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4)
+ val = [[ 0.1473, -0.1677, 0.0163],
+ [-0.1677, 0.228 , -0.0304],
+ [ 0.0163, -0.0304, 0.0112]]
+ assert_almost_equal(val, cov3, decimal=4)
+
# check 2D (n,1) case
y = y[:, np.newaxis]
c = c[:, np.newaxis]
@@ -158,6 +165,29 @@ class TestPolynomial(object):
assert_almost_equal(val0, cov[:, :, 0], decimal=4)
assert_almost_equal(val0, cov[:, :, 1], decimal=4)
+ # check order 1 (deg=0) case, were the analytic results are simple
+ np.random.seed(123)
+ y = np.random.normal(size=(4, 10000))
+ mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True)
+ # Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5.
+ assert_allclose(mean.std(), 0.5, atol=0.01)
+ assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
+ # Without scaling, since reduced chi2 is 1, the result should be the same.
+ mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]),
+ deg=0, cov="unscaled")
+ assert_allclose(mean.std(), 0.5, atol=0.01)
+ assert_almost_equal(np.sqrt(cov.mean()), 0.5)
+ # If we estimate our errors wrong, no change with scaling:
+ w = np.full(y.shape[0], 1./0.5)
+ mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True)
+ assert_allclose(mean.std(), 0.5, atol=0.01)
+ assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
+ # But if we do not scale, our estimate for the error in the mean will
+ # differ.
+ mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled")
+ assert_allclose(mean.std(), 0.5, atol=0.01)
+ assert_almost_equal(np.sqrt(cov.mean()), 0.25)
+
def test_objects(self):
from decimal import Decimal
p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
@@ -216,16 +246,16 @@ class TestPolynomial(object):
assert_equal(r.coeffs.dtype, np.complex128)
assert_equal(q*a + r, b)
- def test_poly_coeffs_immutable(self):
- """ Coefficients should not be modifiable """
+ def test_poly_coeffs_mutable(self):
+ """ Coefficients should be modifiable """
p = np.poly1d([1, 2, 3])
- try:
- # despite throwing an exception, this used to change state
- p.coeffs += 1
- except Exception:
- pass
- assert_equal(p.coeffs, [1, 2, 3])
+ p.coeffs += 1
+ assert_equal(p.coeffs, [2, 3, 4])
p.coeffs[2] += 10
- assert_equal(p.coeffs, [1, 2, 3])
+ assert_equal(p.coeffs, [2, 3, 14])
+
+ # this never used to be allowed - let's not add features to deprecated
+ # APIs
+ assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1))
diff --git a/numpy/lib/tests/test_recfunctions.py b/numpy/lib/tests/test_recfunctions.py
index d1fcf2153..112678294 100644
--- a/numpy/lib/tests/test_recfunctions.py
+++ b/numpy/lib/tests/test_recfunctions.py
@@ -223,9 +223,9 @@ class TestRecFunctions(object):
( 5, ( 6., 7), [ 8., 9.]),
(10, (11., 12), [13., 14.]),
(15, (16., 17), [18., 19.])],
- dtype=[('a', '<i4'),
- ('b', [('f0', '<f4'), ('f1', '<u2')]),
- ('c', '<f4', (2,))])
+ dtype=[('a', 'i4'),
+ ('b', [('f0', 'f4'), ('f1', 'u2')]),
+ ('c', 'f4', (2,))])
assert_equal(out, want)
d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
diff --git a/numpy/lib/tests/test_shape_base.py b/numpy/lib/tests/test_shape_base.py
index e338467f9..01ea028bb 100644
--- a/numpy/lib/tests/test_shape_base.py
+++ b/numpy/lib/tests/test_shape_base.py
@@ -260,8 +260,8 @@ class TestApplyAlongAxis(object):
def test_with_iterable_object(self):
# from issue 5248
d = np.array([
- [set([1, 11]), set([2, 22]), set([3, 33])],
- [set([4, 44]), set([5, 55]), set([6, 66])]
+ [{1, 11}, {2, 22}, {3, 33}],
+ [{4, 44}, {5, 55}, {6, 66}]
])
actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])
diff --git a/numpy/lib/tests/test_type_check.py b/numpy/lib/tests/test_type_check.py
index 2982ca31a..b3f114b92 100644
--- a/numpy/lib/tests/test_type_check.py
+++ b/numpy/lib/tests/test_type_check.py
@@ -360,6 +360,14 @@ class TestNanToNum(object):
assert_(vals[1] == 0)
assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
assert_equal(type(vals), np.ndarray)
+
+ # perform the same tests but with nan, posinf and neginf keywords
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = nan_to_num(np.array((-1., 0, 1))/0.,
+ nan=10, posinf=20, neginf=30)
+ assert_equal(vals, [30, 10, 20])
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_equal(type(vals), np.ndarray)
# perform the same test but in-place
with np.errstate(divide='ignore', invalid='ignore'):
@@ -371,26 +379,48 @@ class TestNanToNum(object):
assert_(vals[1] == 0)
assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2]))
assert_equal(type(vals), np.ndarray)
+
+ # perform the same test but in-place
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = np.array((-1., 0, 1))/0.
+ result = nan_to_num(vals, copy=False, nan=10, posinf=20, neginf=30)
+
+ assert_(result is vals)
+ assert_equal(vals, [30, 10, 20])
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_equal(type(vals), np.ndarray)
def test_array(self):
vals = nan_to_num([1])
assert_array_equal(vals, np.array([1], int))
assert_equal(type(vals), np.ndarray)
+ vals = nan_to_num([1], nan=10, posinf=20, neginf=30)
+ assert_array_equal(vals, np.array([1], int))
+ assert_equal(type(vals), np.ndarray)
def test_integer(self):
vals = nan_to_num(1)
assert_all(vals == 1)
assert_equal(type(vals), np.int_)
+ vals = nan_to_num(1, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1)
+ assert_equal(type(vals), np.int_)
def test_float(self):
vals = nan_to_num(1.0)
assert_all(vals == 1.0)
assert_equal(type(vals), np.float_)
+ vals = nan_to_num(1.1, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1.1)
+ assert_equal(type(vals), np.float_)
def test_complex_good(self):
vals = nan_to_num(1+1j)
assert_all(vals == 1+1j)
assert_equal(type(vals), np.complex_)
+ vals = nan_to_num(1+1j, nan=10, posinf=20, neginf=30)
+ assert_all(vals == 1+1j)
+ assert_equal(type(vals), np.complex_)
def test_complex_bad(self):
with np.errstate(divide='ignore', invalid='ignore'):
@@ -414,6 +444,16 @@ class TestNanToNum(object):
# !! inf. Comment out for now, and see if it
# !! changes
#assert_all(vals.real < -1e10) and assert_all(np.isfinite(vals))
+
+ def test_do_not_rewrite_previous_keyword(self):
+ # This is done to test that when, for instance, nan=np.inf then these
+ # values are not rewritten by posinf keyword to the posinf value.
+ with np.errstate(divide='ignore', invalid='ignore'):
+ vals = nan_to_num(np.array((-1., 0, 1))/0., nan=np.inf, posinf=999)
+ assert_all(np.isfinite(vals[[0, 2]]))
+ assert_all(vals[0] < -1e10)
+ assert_equal(vals[[1, 2]], [np.inf, 999])
+ assert_equal(type(vals), np.ndarray)
class TestRealIfClose(object):
diff --git a/numpy/lib/tests/test_utils.py b/numpy/lib/tests/test_utils.py
index 2723f3440..9673a05fa 100644
--- a/numpy/lib/tests/test_utils.py
+++ b/numpy/lib/tests/test_utils.py
@@ -1,5 +1,6 @@
from __future__ import division, absolute_import, print_function
+import inspect
import sys
import pytest
@@ -38,6 +39,32 @@ def old_func3(self, x):
new_func3 = deprecate(old_func3, old_name="old_func3", new_name="new_func3")
+def old_func4(self, x):
+ """Summary.
+
+ Further info.
+ """
+ return x
+new_func4 = deprecate(old_func4)
+
+
+def old_func5(self, x):
+ """Summary.
+
+ Bizarre indentation.
+ """
+ return x
+new_func5 = deprecate(old_func5)
+
+
+def old_func6(self, x):
+ """
+ Also in PEP-257.
+ """
+ return x
+new_func6 = deprecate(old_func6)
+
+
def test_deprecate_decorator():
assert_('deprecated' in old_func.__doc__)
@@ -51,6 +78,25 @@ def test_deprecate_fn():
assert_('new_func3' in new_func3.__doc__)
+@pytest.mark.skipif(sys.flags.optimize == 2, reason="-OO discards docstrings")
+def test_deprecate_help_indentation():
+ _compare_docs(old_func4, new_func4)
+ _compare_docs(old_func5, new_func5)
+ _compare_docs(old_func6, new_func6)
+
+
+def _compare_docs(old_func, new_func):
+ old_doc = inspect.getdoc(old_func)
+ new_doc = inspect.getdoc(new_func)
+ index = new_doc.index('\n\n') + 2
+ assert_equal(new_doc[index:], old_doc)
+
+
+@pytest.mark.skipif(sys.flags.optimize == 2, reason="-OO discards docstrings")
+def test_deprecate_preserve_whitespace():
+ assert_('\n Bizarre' in new_func5.__doc__)
+
+
def test_safe_eval_nameconstant():
# Test if safe_eval supports Python 3.4 _ast.NameConstant
utils.safe_eval('None')