summaryrefslogtreecommitdiff
path: root/numpy/lib/tests
diff options
context:
space:
mode:
authorMilesCranmer <miles.cranmer@gmail.com>2018-10-03 12:04:16 -0400
committerMilesCranmer <miles.cranmer@gmail.com>2022-06-09 20:35:03 -0400
commitbcaabe1da3d2f7905b287d430f00c46c8d75209c (patch)
tree658b53733ca8cc5f9391dd865ed62fc4726be5ed /numpy/lib/tests
parentd2ea8190c769c1c546f6f3fed495772aeeb90f0b (diff)
downloadnumpy-bcaabe1da3d2f7905b287d430f00c46c8d75209c.tar.gz
TST: add tests for in1d/isin
- These tests hit the areas of the old algorithm which are now replaced for the majority of cases - Another test tests behaviour of boolean input to isin/in1d
Diffstat (limited to 'numpy/lib/tests')
-rw-r--r--numpy/lib/tests/test_arraysetops.py99
1 files changed, 99 insertions, 0 deletions
diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py
index e64634b69..707c84101 100644
--- a/numpy/lib/tests/test_arraysetops.py
+++ b/numpy/lib/tests/test_arraysetops.py
@@ -296,6 +296,75 @@ class TestSetOps:
assert_array_equal(in1d([], []), [])
+ def test_in1d_hit_alternate_algorithm_floats(self):
+ # Perform the above test but with floats
+ # This forces the old in1d (pre-Oct 1/2018) algorithm
+ for mult in (1, 10):
+ # One check without np.array to make sure lists are handled correct
+ a = [5, 7, 1, 2]
+ b = [2, 4, 3, 1, 5] * mult
+ ec = np.array([True, False, True, True])
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32), assume_unique=True)
+ assert_array_equal(c, ec)
+
+ a[0] = 8
+ ec = np.array([False, False, True, True])
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32), assume_unique=True)
+ assert_array_equal(c, ec)
+
+ a[0], a[3] = 4, 8
+ ec = np.array([True, False, True, False])
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32), assume_unique=True)
+ assert_array_equal(c, ec)
+
+ a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5])
+ b = [2, 3, 4] * mult
+ ec = [False, True, False, True, True, True, True, True, True,
+ False, True, False, False, False]
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32))
+ assert_array_equal(c, ec)
+
+ b = b + [5, 5, 4] * mult
+ ec = [True, True, True, True, True, True, True, True, True, True,
+ True, False, True, True]
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32))
+ assert_array_equal(c, ec)
+
+ a = np.array([5, 7, 1, 2])
+ b = np.array([2, 4, 3, 1, 5] * mult)
+ ec = np.array([True, False, True, True])
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32))
+ assert_array_equal(c, ec)
+
+ a = np.array([5, 7, 1, 1, 2])
+ b = np.array([2, 4, 3, 3, 1, 5] * mult)
+ ec = np.array([True, False, True, True, True])
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32))
+ assert_array_equal(c, ec)
+
+ a = np.array([5, 5])
+ b = np.array([2, 2] * mult)
+ ec = np.array([False, False])
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32))
+ assert_array_equal(c, ec)
+
+ a = np.array([5])
+ b = np.array([2])
+ ec = np.array([False])
+ c = in1d(np.array(a, dtype=np.float32),
+ np.array(b, dtype=np.float32))
+ assert_array_equal(c, ec)
+
+ assert_array_equal(in1d([], []), [])
+
def test_in1d_char_array(self):
a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b'])
b = np.array(['a', 'c'])
@@ -314,6 +383,13 @@ class TestSetOps:
b = [2, 3, 4] * mult
assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
+ for mult in (1, 10):
+ a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5],
+ dtype=np.float32)
+ b = [2, 3, 4] * mult
+ b = np.array(b, dtype=np.float32)
+ assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True))
+
def test_in1d_ravel(self):
# Test that in1d ravels its input arrays. This is not documented
# behavior however. The test is to ensure consistentency.
@@ -327,6 +403,29 @@ class TestSetOps:
assert_array_equal(in1d(a, long_b, assume_unique=True), ec)
assert_array_equal(in1d(a, long_b, assume_unique=False), ec)
+ def test_in1d_hit_alternate_algorithm(self):
+ """Hit the standard isin code with integers"""
+ # Need extreme range to hit standard code
+ a = np.array([5, 4, 5, 3, 4, 4, 1e9], dtype=np.int64)
+ b = np.array([2, 3, 4, 1e9], dtype=np.int64)
+ expected = np.array([0, 1, 0, 1, 1, 1, 1], dtype=np.bool)
+ assert_array_equal(expected, in1d(a, b))
+ assert_array_equal(np.invert(expected), in1d(a, b, invert=True))
+
+ a = np.array([5, 7, 1, 2], dtype=np.int64)
+ b = np.array([2, 4, 3, 1, 5, 1e9], dtype=np.int64)
+ ec = np.array([True, False, True, True])
+ c = in1d(a, b, assume_unique=True)
+ assert_array_equal(c, ec)
+
+ def test_in1d_boolean(self):
+ """Test that in1d works for boolean input"""
+ a = np.array([True, False])
+ b = np.array([False, False, False])
+ expected = np.array([False, True])
+ assert_array_equal(expected, in1d(a, b))
+ assert_array_equal(np.invert(expected), in1d(a, b, invert=True))
+
def test_in1d_first_array_is_object(self):
ar1 = [None]
ar2 = np.array([1]*10)