diff options
author | Stefan van der Walt <stefan@sun.ac.za> | 2007-01-08 21:56:54 +0000 |
---|---|---|
committer | Stefan van der Walt <stefan@sun.ac.za> | 2007-01-08 21:56:54 +0000 |
commit | 1bd2d49ef378fb869d015cef32c3e44a4c03a8f0 (patch) | |
tree | 43335baf1da0b6e9de0ad806e721a077e3cbfa45 /numpy/lib/twodim_base.py | |
parent | 98b6d48b07f4eadfb7d1fc41483debe7e07eecd6 (diff) | |
download | numpy-1bd2d49ef378fb869d015cef32c3e44a4c03a8f0.tar.gz |
Whitespace cleanup.
Diffstat (limited to 'numpy/lib/twodim_base.py')
-rw-r--r-- | numpy/lib/twodim_base.py | 42 |
1 files changed, 21 insertions, 21 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index d79fd03c6..fd2ff586a 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -50,7 +50,7 @@ def eye(N, M=None, k=0, dtype=float): return m.astype(dtype) def diag(v, k=0): - """ returns a copy of the the k-th diagonal if v is a 2-d array + """ returns a copy of the the k-th diagonal if v is a 2-d array or returns a 2-d array with v as the k-th diagonal if v is a 1-d array. """ @@ -100,7 +100,7 @@ def diagflat(v,k=0): if not wrap: return res return wrap(res) - + def tri(N, M=None, k=0, dtype=float): """ returns a N-by-M array where all the diagonals starting from lower left corner up to the k-th are all ones. @@ -108,7 +108,7 @@ def tri(N, M=None, k=0, dtype=float): if M is None: M = N m = greater_equal(subtract.outer(arange(N), arange(M)),-k) if m.dtype != dtype: - return m.astype(dtype) + return m.astype(dtype) def tril(m, k=0): """ returns the elements on and below the k-th diagonal of m. k=0 is the @@ -145,20 +145,20 @@ def vander(x, N=None): def histogram2d(x,y, bins=10, range=None, normed=False): """histogram2d(x,y, bins=10, range=None, normed=False) -> H, xedges, yedges - - Compute the 2D histogram from samples x,y. + + Compute the 2D histogram from samples x,y. Parameters ---------- x,y: 1D data series. Both arrays must have the same length. - bins: Number of bins -or- [nbin x, nbin y] -or- + bins: Number of bins -or- [nbin x, nbin y] -or- [bin edges] -or- [x bin edges, y bin edges]. range: A sequence of lower and upper bin edges (default: [min, max]). - normed: True or False. - - The histogram array is a count of the number of samples in each - two dimensional bin. - Setting normed to True returns a density rather than a bin count. + normed: True or False. + + The histogram array is a count of the number of samples in each + two dimensional bin. + Setting normed to True returns a density rather than a bin count. """ import numpy as np try: @@ -196,19 +196,19 @@ def histogram2d(x,y, bins=10, range=None, normed=False): xedges = yedges.copy() ynbin = len(yedges)-1 xnbin = len(xedges)-1 - + dxedges = np.diff(xedges) dyedges = np.diff(yedges) - + # Flattened histogram matrix (1D) hist = np.zeros((xnbin)*(ynbin), int) # Count the number of sample in each bin (1D) - xbin = np.digitize(x,xedges) - ybin = np.digitize(y,yedges) - + xbin = np.digitize(x,xedges) + ybin = np.digitize(y,yedges) + # Values that fall on an edge are put in the right bin. - # For the rightmost bin, we want values equal to the right + # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. xdecimal = int(-np.log10(dxedges.min()))+6 ydecimal = int(-np.log10(dyedges.min()))+6 @@ -220,15 +220,15 @@ def histogram2d(x,y, bins=10, range=None, normed=False): outliers = (xbin==0) | (xbin==xnbin+1) | (ybin==0) | (ybin == ynbin+1) xbin = xbin[outliers==False] - 1 ybin = ybin[outliers==False] - 1 - + # Compute the sample indices in the flattened histogram matrix. if xnbin >= ynbin: xy = ybin*(xnbin) + xbin - + else: xy = xbin*(ynbin) + ybin - - + + # Compute the number of repetitions in xy and assign it to the flattened # histogram matrix. |