diff options
author | Frank Breitling <frank.breitling@gmx.de> | 2013-08-06 00:55:11 +0200 |
---|---|---|
committer | Ralf Gommers <ralf.gommers@googlemail.com> | 2013-08-11 23:16:17 +0200 |
commit | f62522c610f334f86b1be2a586211d0e4dcdd934 (patch) | |
tree | c084ad6514f479179f076e678c5fc7cec117ed4b /numpy/lib/twodim_base.py | |
parent | a23803e9e5f286d5bbdb3d5059d7630e6bd775a2 (diff) | |
download | numpy-f62522c610f334f86b1be2a586211d0e4dcdd934.tar.gz |
DOC: update example of histogram2d to doctest format.
Diffstat (limited to 'numpy/lib/twodim_base.py')
-rw-r--r-- | numpy/lib/twodim_base.py | 61 |
1 files changed, 30 insertions, 31 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py index c4cbaa9f1..4021a1b3c 100644 --- a/numpy/lib/twodim_base.py +++ b/numpy/lib/twodim_base.py @@ -587,49 +587,48 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None): -------- 2D-histogram with variable bin width: - import matplotlib as ml - import matplotlib.pyplot as plt - import numpy as np + >>> import matplotlib as mpl + >>> import matplotlib.pyplot as plt # First we define the bin edges - xedges = [0, 1, 1.5, 3, 5] - yedges = [0, 2, 3, 4, 6] + >>> xedges = [0, 1, 1.5, 3, 5] + >>> yedges = [0, 2, 3, 4, 6] # Next we create a histogram H with random bin content - x = np.random.normal(3, 1, 100) - y = np.random.normal(1, 1, 100) - H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) + >>> x = np.random.normal(3, 1, 100) + >>> y = np.random.normal(1, 1, 100) + >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges)) # Or we fill the histogram H with a determined bin content - H = np.ones((4, 4)).cumsum().reshape(4, 4) - print H[::-1] # This shows the bin content in the order as plotted + >>> H = np.ones((4, 4)).cumsum().reshape(4, 4) + >>> print H[::-1] # This shows the bin content in the order as plotted - fig = plt.figure(figsize=(7, 3)) + >>> fig = plt.figure(figsize=(7, 3)) # Imshow can only do an equidistant representation of bins - ax = fig.add_subplot(131) - ax.set_title('imshow:\nequidistant') - im = plt.imshow(H, interpolation='nearest', origin='low', - extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) + >>> ax = fig.add_subplot(131) + >>> ax.set_title('imshow:\nequidistant') + >>> im = plt.imshow(H, interpolation='nearest', origin='low', + extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]]) # pcolormesh can displaying exact bin edges - ax = fig.add_subplot(132) - ax.set_title('pcolormesh:\nexact bin edges') - X, Y = np.meshgrid(xedges, yedges) - ax.pcolormesh(X, Y, H) - ax.set_aspect('equal') + >>> ax = fig.add_subplot(132) + >>> ax.set_title('pcolormesh:\nexact bin edges') + >>> X, Y = np.meshgrid(xedges, yedges) + >>> ax.pcolormesh(X, Y, H) + >>> ax.set_aspect('equal') # NonUniformImage displays exact bin edges with interpolation - ax = fig.add_subplot(133) - ax.set_title('NonUniformImage:\ninterpolated') - im = ml.image.NonUniformImage(ax, interpolation='bilinear') - xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) - ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) - im.set_data(xcenters, ycenters, H) - ax.images.append(im) - ax.set_xlim(xedges[0], xedges[-1]) - ax.set_ylim(yedges[0], yedges[-1]) - ax.set_aspect('equal') - plt.show() + >>> ax = fig.add_subplot(133) + >>> ax.set_title('NonUniformImage:\ninterpolated') + >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear') + >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1]) + >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1]) + >>> im.set_data(xcenters, ycenters, H) + >>> ax.images.append(im) + >>> ax.set_xlim(xedges[0], xedges[-1]) + >>> ax.set_ylim(yedges[0], yedges[-1]) + >>> ax.set_aspect('equal') + >>> plt.show() """ from numpy import histogramdd |