summaryrefslogtreecommitdiff
path: root/numpy/lib/twodim_base.py
diff options
context:
space:
mode:
authorFrank Breitling <frank.breitling@gmx.de>2013-08-06 00:55:11 +0200
committerRalf Gommers <ralf.gommers@googlemail.com>2013-08-11 23:16:17 +0200
commitf62522c610f334f86b1be2a586211d0e4dcdd934 (patch)
treec084ad6514f479179f076e678c5fc7cec117ed4b /numpy/lib/twodim_base.py
parenta23803e9e5f286d5bbdb3d5059d7630e6bd775a2 (diff)
downloadnumpy-f62522c610f334f86b1be2a586211d0e4dcdd934.tar.gz
DOC: update example of histogram2d to doctest format.
Diffstat (limited to 'numpy/lib/twodim_base.py')
-rw-r--r--numpy/lib/twodim_base.py61
1 files changed, 30 insertions, 31 deletions
diff --git a/numpy/lib/twodim_base.py b/numpy/lib/twodim_base.py
index c4cbaa9f1..4021a1b3c 100644
--- a/numpy/lib/twodim_base.py
+++ b/numpy/lib/twodim_base.py
@@ -587,49 +587,48 @@ def histogram2d(x, y, bins=10, range=None, normed=False, weights=None):
--------
2D-histogram with variable bin width:
- import matplotlib as ml
- import matplotlib.pyplot as plt
- import numpy as np
+ >>> import matplotlib as mpl
+ >>> import matplotlib.pyplot as plt
# First we define the bin edges
- xedges = [0, 1, 1.5, 3, 5]
- yedges = [0, 2, 3, 4, 6]
+ >>> xedges = [0, 1, 1.5, 3, 5]
+ >>> yedges = [0, 2, 3, 4, 6]
# Next we create a histogram H with random bin content
- x = np.random.normal(3, 1, 100)
- y = np.random.normal(1, 1, 100)
- H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges))
+ >>> x = np.random.normal(3, 1, 100)
+ >>> y = np.random.normal(1, 1, 100)
+ >>> H, xedges, yedges = np.histogram2d(y, x, bins=(xedges, yedges))
# Or we fill the histogram H with a determined bin content
- H = np.ones((4, 4)).cumsum().reshape(4, 4)
- print H[::-1] # This shows the bin content in the order as plotted
+ >>> H = np.ones((4, 4)).cumsum().reshape(4, 4)
+ >>> print H[::-1] # This shows the bin content in the order as plotted
- fig = plt.figure(figsize=(7, 3))
+ >>> fig = plt.figure(figsize=(7, 3))
# Imshow can only do an equidistant representation of bins
- ax = fig.add_subplot(131)
- ax.set_title('imshow:\nequidistant')
- im = plt.imshow(H, interpolation='nearest', origin='low',
- extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
+ >>> ax = fig.add_subplot(131)
+ >>> ax.set_title('imshow:\nequidistant')
+ >>> im = plt.imshow(H, interpolation='nearest', origin='low',
+ extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])
# pcolormesh can displaying exact bin edges
- ax = fig.add_subplot(132)
- ax.set_title('pcolormesh:\nexact bin edges')
- X, Y = np.meshgrid(xedges, yedges)
- ax.pcolormesh(X, Y, H)
- ax.set_aspect('equal')
+ >>> ax = fig.add_subplot(132)
+ >>> ax.set_title('pcolormesh:\nexact bin edges')
+ >>> X, Y = np.meshgrid(xedges, yedges)
+ >>> ax.pcolormesh(X, Y, H)
+ >>> ax.set_aspect('equal')
# NonUniformImage displays exact bin edges with interpolation
- ax = fig.add_subplot(133)
- ax.set_title('NonUniformImage:\ninterpolated')
- im = ml.image.NonUniformImage(ax, interpolation='bilinear')
- xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1])
- ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1])
- im.set_data(xcenters, ycenters, H)
- ax.images.append(im)
- ax.set_xlim(xedges[0], xedges[-1])
- ax.set_ylim(yedges[0], yedges[-1])
- ax.set_aspect('equal')
- plt.show()
+ >>> ax = fig.add_subplot(133)
+ >>> ax.set_title('NonUniformImage:\ninterpolated')
+ >>> im = mpl.image.NonUniformImage(ax, interpolation='bilinear')
+ >>> xcenters = xedges[:-1] + 0.5 * (xedges[1:] - xedges[:-1])
+ >>> ycenters = yedges[:-1] + 0.5 * (yedges[1:] - yedges[:-1])
+ >>> im.set_data(xcenters, ycenters, H)
+ >>> ax.images.append(im)
+ >>> ax.set_xlim(xedges[0], xedges[-1])
+ >>> ax.set_ylim(yedges[0], yedges[-1])
+ >>> ax.set_aspect('equal')
+ >>> plt.show()
"""
from numpy import histogramdd