diff options
author | warren <warren.weckesser@gmail.com> | 2022-11-24 13:07:26 -0500 |
---|---|---|
committer | warren <warren.weckesser@gmail.com> | 2022-11-24 13:07:26 -0500 |
commit | 09154cfa6dea50a6ac24ae1062095c9e98026bbc (patch) | |
tree | bbd4fae95df38e6320c75de756ece68c1cb8c87a /numpy/lib | |
parent | a872fd73e6e94727c7acf281b03789bd42cda086 (diff) | |
download | numpy-09154cfa6dea50a6ac24ae1062095c9e98026bbc.tar.gz |
DOC: lib: Use keepdims in a couple docstrings.
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/shape_base.py | 16 |
1 files changed, 9 insertions, 7 deletions
diff --git a/numpy/lib/shape_base.py b/numpy/lib/shape_base.py index ab91423d9..b8b3ebaad 100644 --- a/numpy/lib/shape_base.py +++ b/numpy/lib/shape_base.py @@ -124,19 +124,21 @@ def take_along_axis(arr, indices, axis): >>> np.sort(a, axis=1) array([[10, 20, 30], [40, 50, 60]]) - >>> ai = np.argsort(a, axis=1); ai + >>> ai = np.argsort(a, axis=1) + >>> ai array([[0, 2, 1], [1, 2, 0]]) >>> np.take_along_axis(a, ai, axis=1) array([[10, 20, 30], [40, 50, 60]]) - The same works for max and min, if you expand the dimensions: + The same works for max and min, if you maintain the trivial dimension + with ``keepdims``: - >>> np.expand_dims(np.max(a, axis=1), axis=1) + >>> np.max(a, axis=1, keepdims=True) array([[30], [60]]) - >>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1) + >>> ai = np.argmax(a, axis=1, keepdims=True) >>> ai array([[1], [0]]) @@ -147,8 +149,8 @@ def take_along_axis(arr, indices, axis): If we want to get the max and min at the same time, we can stack the indices first - >>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1) - >>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1) + >>> ai_min = np.argmin(a, axis=1, keepdims=True) + >>> ai_max = np.argmax(a, axis=1, keepdims=True) >>> ai = np.concatenate([ai_min, ai_max], axis=1) >>> ai array([[0, 1], @@ -237,7 +239,7 @@ def put_along_axis(arr, indices, values, axis): We can replace the maximum values with: - >>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1) + >>> ai = np.argmax(a, axis=1, keepdims=True) >>> ai array([[1], [0]]) |