diff options
author | Christopher <cjp.agostino@gmail.com> | 2018-05-25 19:25:20 -0400 |
---|---|---|
committer | Charles Harris <charlesr.harris@gmail.com> | 2018-05-25 17:25:20 -0600 |
commit | 0bd86db79b7a8000f9dbd401df722ffae9c2b33c (patch) | |
tree | 2cf44e0dda4c2c0d0cf902f69137133392aeda22 /numpy/lib | |
parent | 0dfb8f06fc9f80f1618624f9bbf7565adf735235 (diff) | |
download | numpy-0bd86db79b7a8000f9dbd401df722ffae9c2b33c.tar.gz |
ENH: Modify intersect1d to return common indices (#10684)
* added function commonpts1d
* Update arraysetops.py
* Update arraysetops.py
* modified intersect1d to return common indices
Proposed this idea in previous pull request (https://github.com/numpy/numpy/pull/10683) and made suggested changes for implementing this idea to have relevant common indices that correspond to the values in the intersection of the two arrays.
* update intersect1d with suggested changes
* implemented return_indices options for intersect1d
I've tested out the above code and for the ~10 different test sets I've tried it's worked thus far. It's probably not the cleanest implementation but it works and is vectorized.
* cleaned up structure for intersect1d
* fixed copy-paste error, added second test, changed a conditional
* Testing return_indices in intersect1d
* formatting
* created separate test function for intersect1d indices, added spaces after commas
* fixed up example and some style
* fixed style
* style change
* removed one example
* removed extra space
* added version number for return_indices
* added 'return_indices' keyword for np.intersect1d
* fixed formatting
* updated return_indices entry
* fixed some typos and style
* added bit about first instance of a value being used
* STY: Fix comment formats
* DOC: missing space
* DOC: correct parameter names in docstring
* made suggested changes
* fixed a mistake from previous update
also added documentation for comm1, comm2 to match doc from np.unique
* added in tests for 2d inputs
* STY: Add missing spaces around commas
* TST: Correct array to actually be unique
* STY: Spaces at beginning of comments
Diffstat (limited to 'numpy/lib')
-rw-r--r-- | numpy/lib/arraysetops.py | 65 | ||||
-rw-r--r-- | numpy/lib/tests/test_arraysetops.py | 41 |
2 files changed, 97 insertions, 9 deletions
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py index e8eda297f..4d3f35183 100644 --- a/numpy/lib/arraysetops.py +++ b/numpy/lib/arraysetops.py @@ -298,7 +298,7 @@ def _unique1d(ar, return_index=False, return_inverse=False, return ret -def intersect1d(ar1, ar2, assume_unique=False): +def intersect1d(ar1, ar2, assume_unique=False, return_indices=False): """ Find the intersection of two arrays. @@ -307,15 +307,28 @@ def intersect1d(ar1, ar2, assume_unique=False): Parameters ---------- ar1, ar2 : array_like - Input arrays. + Input arrays. Will be flattened if not already 1D. assume_unique : bool If True, the input arrays are both assumed to be unique, which can speed up the calculation. Default is False. - + return_indices : bool + If True, the indices which correspond to the intersection of the + two arrays are returned. The first instance of a value is used + if there are multiple. Default is False. + + .. versionadded:: 1.15.0 + Returns ------- intersect1d : ndarray Sorted 1D array of common and unique elements. + comm1 : ndarray + The indices of the first occurrences of the common values in `ar1`. + Only provided if `return_indices` is True. + comm2 : ndarray + The indices of the first occurrences of the common values in `ar2`. + Only provided if `return_indices` is True. + See Also -------- @@ -332,14 +345,49 @@ def intersect1d(ar1, ar2, assume_unique=False): >>> from functools import reduce >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2])) array([3]) + + To return the indices of the values common to the input arrays + along with the intersected values: + >>> x = np.array([1, 1, 2, 3, 4]) + >>> y = np.array([2, 1, 4, 6]) + >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True) + >>> x_ind, y_ind + (array([0, 2, 4]), array([1, 0, 2])) + >>> xy, x[x_ind], y[y_ind] + (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4])) + """ if not assume_unique: - # Might be faster than unique( intersect1d( ar1, ar2 ) )? - ar1 = unique(ar1) - ar2 = unique(ar2) + if return_indices: + ar1, ind1 = unique(ar1, return_index=True) + ar2, ind2 = unique(ar2, return_index=True) + else: + ar1 = unique(ar1) + ar2 = unique(ar2) + else: + ar1 = ar1.ravel() + ar2 = ar2.ravel() + aux = np.concatenate((ar1, ar2)) - aux.sort() - return aux[:-1][aux[1:] == aux[:-1]] + if return_indices: + aux_sort_indices = np.argsort(aux, kind='mergesort') + aux = aux[aux_sort_indices] + else: + aux.sort() + + mask = aux[1:] == aux[:-1] + int1d = aux[:-1][mask] + + if return_indices: + ar1_indices = aux_sort_indices[:-1][mask] + ar2_indices = aux_sort_indices[1:][mask] - ar1.size + if not assume_unique: + ar1_indices = ind1[ar1_indices] + ar2_indices = ind2[ar2_indices] + + return int1d, ar1_indices, ar2_indices + else: + return int1d def setxor1d(ar1, ar2, assume_unique=False): """ @@ -660,3 +708,4 @@ def setdiff1d(ar1, ar2, assume_unique=False): ar1 = unique(ar1) ar2 = unique(ar2) return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)] + diff --git a/numpy/lib/tests/test_arraysetops.py b/numpy/lib/tests/test_arraysetops.py index 984a3b15e..dace5ade8 100644 --- a/numpy/lib/tests/test_arraysetops.py +++ b/numpy/lib/tests/test_arraysetops.py @@ -32,7 +32,46 @@ class TestSetOps(object): assert_array_equal(c, ed) assert_array_equal([], intersect1d([], [])) - + + def test_intersect1d_indices(self): + # unique inputs + a = np.array([1, 2, 3, 4]) + b = np.array([2, 1, 4, 6]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ee = np.array([1, 2, 4]) + assert_array_equal(c, ee) + assert_array_equal(a[i1], ee) + assert_array_equal(b[i2], ee) + + # non-unique inputs + a = np.array([1, 2, 2, 3, 4, 3, 2]) + b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ef = np.array([1, 2, 3, 4]) + assert_array_equal(c, ef) + assert_array_equal(a[i1], ef) + assert_array_equal(b[i2], ef) + + # non1d, unique inputs + a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) + b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) + c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 6, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + + # non1d, not assumed to be uniqueinputs + a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) + b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) + c, i1, i2 = intersect1d(a, b, return_indices=True) + ui1 = np.unravel_index(i1, a.shape) + ui2 = np.unravel_index(i2, b.shape) + ea = np.array([2, 7, 8]) + assert_array_equal(ea, a[ui1]) + assert_array_equal(ea, b[ui2]) + def test_setxor1d(self): a = np.array([5, 7, 1, 2]) b = np.array([2, 4, 3, 1, 5]) |