summaryrefslogtreecommitdiff
path: root/numpy/lib
diff options
context:
space:
mode:
authorJonathan Helmus <jjhelmus@gmail.com>2013-09-16 10:32:25 -0600
committerJonathan Helmus <jjhelmus@gmail.com>2013-09-16 10:32:25 -0600
commit9dd212cee1c9ccab6013d52e776bcf6ef712a5e0 (patch)
treea4a4414bd29efdf3d023fbba9a5d5690063fd579 /numpy/lib
parent9aed31a8ba1607241947bfe886821e9eb09f6ebb (diff)
downloadnumpy-9dd212cee1c9ccab6013d52e776bcf6ef712a5e0.tar.gz
MAINT: changed 'closest' interpolation to 'nearest'
Diffstat (limited to 'numpy/lib')
-rw-r--r--numpy/lib/function_base.py8
-rw-r--r--numpy/lib/tests/test_function_base.py6
2 files changed, 7 insertions, 7 deletions
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 1f6484959..9475c2edf 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -2780,14 +2780,14 @@ def percentile(a, q, interpolation='linear', axis=None, out=None,
Input array or object that can be converted to an array.
q : float in range of [0,100] (or sequence of floats)
Percentile to compute which must be between 0 and 100 inclusive.
- interpolation : {'linear', 'lower', 'higher', 'midpoint', 'closest'}
+ interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
This optional parameter specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`:
* linear: `i + (j - i) * fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
* lower: `i`.
* higher: `j`.
- * closest: `i` or `j` whichever is closest.
+ * nearest: `i` or `j` whichever is nearest.
* midpoint: (`i` + `j`) / 2.
axis : int, optional
Axis along which the percentiles are computed. The default (None)
@@ -2890,13 +2890,13 @@ def percentile(a, q, interpolation='linear', axis=None, out=None,
indices = ceil(indices).astype(intp)
elif interpolation == 'midpoint':
indices = floor(indices) + 0.5
- elif interpolation == 'closest':
+ elif interpolation == 'nearest':
indices = around(indices).astype(intp)
elif interpolation == 'linear':
pass # keep index as fraction and interpolate
else:
raise ValueError("interpolation can only be 'linear', 'lower' "
- "'higher', 'midpoint', or 'closest'")
+ "'higher', 'midpoint', or 'nearest'")
if indices.dtype == intp: # take the points along axis
ap.partition(indices, axis=axis)
diff --git a/numpy/lib/tests/test_function_base.py b/numpy/lib/tests/test_function_base.py
index 6923f0004..a69c82e18 100644
--- a/numpy/lib/tests/test_function_base.py
+++ b/numpy/lib/tests/test_function_base.py
@@ -1477,11 +1477,11 @@ class TestScoreatpercentile(TestCase):
assert_equal(np.percentile(range(10), 51,
interpolation='midpoint'), 4.5)
- def test_closest(self):
+ def test_nearest(self):
assert_equal(np.percentile(range(10), 51,
- interpolation='closest'), 5)
+ interpolation='nearest'), 5)
assert_equal(np.percentile(range(10), 49,
- interpolation='closest'), 4)
+ interpolation='nearest'), 4)
def test_sequence(self):
x = np.arange(8) * 0.5