diff options
| author | guoci <zguoci@gmail.com> | 2018-11-20 13:29:24 -0500 |
|---|---|---|
| committer | guoci <zguoci@gmail.com> | 2018-11-20 13:29:24 -0500 |
| commit | b0b07cabd11510e03cc42d6f66ecebb6eb5f10a4 (patch) | |
| tree | 31f53c5441f6941c2844b5bf833ed27310cfc635 /numpy/lib | |
| parent | c3c6cd5e70e1f10ce374fb580debc846922a9232 (diff) | |
| download | numpy-b0b07cabd11510e03cc42d6f66ecebb6eb5f10a4.tar.gz | |
resolve issues from review
Diffstat (limited to 'numpy/lib')
| -rw-r--r-- | numpy/lib/histograms.py | 7 | ||||
| -rw-r--r-- | numpy/lib/tests/test_histograms.py | 4 |
2 files changed, 7 insertions, 4 deletions
diff --git a/numpy/lib/histograms.py b/numpy/lib/histograms.py index 6666d8628..482eabe14 100644 --- a/numpy/lib/histograms.py +++ b/numpy/lib/histograms.py @@ -111,7 +111,7 @@ def _hist_bin_scott(x, range): return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x) -def _hist_bin_ise(x, range): +def _hist_bin_stone(x, range): """ Histogram bin estimator based on minimizing the estimated integrated squared error (ISE). @@ -119,6 +119,9 @@ def _hist_bin_ise(x, range): The ISE is estimated using cross-validation and can be regarded as a generalization of Scott's rule. https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule + This paper by Stone appears to be the origination of this rule. + http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf + Parameters ---------- x : array_like @@ -258,7 +261,7 @@ def _hist_bin_auto(x, range): return sturges_bw # Private dict initialized at module load time -_hist_bin_selectors = {'stone': _hist_bin_ise, +_hist_bin_selectors = {'stone': _hist_bin_stone, 'auto': _hist_bin_auto, 'doane': _hist_bin_doane, 'fd': _hist_bin_fd, diff --git a/numpy/lib/tests/test_histograms.py b/numpy/lib/tests/test_histograms.py index 67a94877d..49c0d9720 100644 --- a/numpy/lib/tests/test_histograms.py +++ b/numpy/lib/tests/test_histograms.py @@ -544,8 +544,8 @@ class TestHistogramOptimBinNums(object): a, b = np.histogram(outlier_dataset, estimator) assert_equal(len(a), numbins) - def test_scott_vs_ise(self): - """Verify that Scott's rule and the ISE based method converges for normally distributed data""" + def test_scott_vs_stone(self): + """Verify that Scott's rule and Stone's rule converges for normally distributed data""" def nbins_ratio(seed, size): rng = np.random.RandomState(seed) |
