diff options
author | Warren Weckesser <warren.weckesser@gmail.com> | 2013-06-01 17:51:51 -0400 |
---|---|---|
committer | Warren Weckesser <warren.weckesser@gmail.com> | 2013-06-01 18:39:43 -0400 |
commit | 40000f508ab5f736b5a62c97a1e4bb72d55bf19c (patch) | |
tree | ab8e1fd02e45b61db30c1c70f5f019a83c6e6e06 /numpy/linalg/linalg.py | |
parent | dff8c9497b06542712e9666b43ac80b2a30f1d47 (diff) | |
download | numpy-40000f508ab5f736b5a62c97a1e4bb72d55bf19c.tar.gz |
ENH: linalg: Add the `axis` keyword to linalg.norm.
Also fixed a bug that occurred with integer arrays and negative ord. For example,
norm([1, 3], -1) returned 1.0, but the correct value is 0.75.
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r-- | numpy/linalg/linalg.py | 56 |
1 files changed, 42 insertions, 14 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py index ae0da3685..b063a2ede 100644 --- a/numpy/linalg/linalg.py +++ b/numpy/linalg/linalg.py @@ -22,8 +22,9 @@ from numpy.core import array, asarray, zeros, empty, transpose, \ intc, single, double, csingle, cdouble, inexact, complexfloating, \ newaxis, ravel, all, Inf, dot, add, multiply, identity, sqrt, \ maximum, flatnonzero, diagonal, arange, fastCopyAndTranspose, sum, \ - isfinite, size, finfo, absolute, log, exp, errstate, geterrobj -from numpy.lib import triu + isfinite, size, finfo, absolute, log, exp, errstate, geterrobj, \ + float64, float128 +from numpy.lib import triu, asfarray from numpy.linalg import lapack_lite, _umath_linalg from numpy.matrixlib.defmatrix import matrix_power from numpy.compat import asbytes @@ -1865,7 +1866,8 @@ def lstsq(a, b, rcond=-1): st = s[:min(n, m)].copy().astype(result_real_t) return wrap(x), wrap(resids), results['rank'], st -def norm(x, ord=None): + +def norm(x, ord=None, axis=None): """ Matrix or vector norm. @@ -1880,11 +1882,14 @@ def norm(x, ord=None): ord : {non-zero int, inf, -inf, 'fro'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. + axis : int or None, optional + If `axis` is not None, it specifies the axis of `x` along which to + compute the vector norms. Returns ------- - n : float - Norm of the matrix or vector. + n : float or ndarray + Norm of the matrix or vector(s). Notes ----- @@ -1967,29 +1972,52 @@ def norm(x, ord=None): >>> LA.norm(a, -3) nan + Using the `axis` argument: + + >>> c = np.array([[ 1, 2, 3], + ... [-1, 1, 4]]) + >>> LA.norm(c, axis=0) + array([ 1.41421356, 2.23606798, 5. ]) + >>> LA.norm(c, axis=1) + array([ 3.74165739, 4.24264069]) + >>> LA.norm(c, ord=1, axis=1) + array([6, 6]) + """ x = asarray(x) - if ord is None: # check the default case first and handle it immediately + + # Check the default case first and handle it immediately. + if ord is None and axis is None: + s = (x.conj() * x).real return sqrt(add.reduce((x.conj() * x).ravel().real)) nd = x.ndim - if nd == 1: + if nd == 1 or axis is not None: if ord == Inf: - return abs(x).max() + return abs(x).max(axis=axis) elif ord == -Inf: - return abs(x).min() + return abs(x).min(axis=axis) elif ord == 0: - return (x != 0).sum() # Zero norm + # Zero norm + return (x != 0).sum(axis=axis) elif ord == 1: - return abs(x).sum() # special case for speedup - elif ord == 2: - return sqrt(((x.conj()*x).real).sum()) # special case for speedup + # special case for speedup + return add.reduce(abs(x), axis=axis) + elif ord is None or ord == 2: + # special case for speedup + s = (x.conj() * x).real + return sqrt(add.reduce(s, axis=axis)) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") - return ((abs(x)**ord).sum())**(1.0/ord) + if x.dtype != float128: + # Convert to a float type, so integer arrays give + # float results. Don't apply asfarray to float128 arrays, + # because it will downcast to float64. + absx = asfarray(abs(x)) + return add.reduce(absx**ord, axis=axis)**(1.0/ord) elif nd == 2: if ord == 2: return svd(x, compute_uv=0).max() |