summaryrefslogtreecommitdiff
path: root/numpy/linalg/linalg.py
diff options
context:
space:
mode:
authorAdam J. Stewart <ajstewart426@gmail.com>2019-01-30 12:26:52 -0600
committerAdam J. Stewart <ajstewart426@gmail.com>2019-01-30 12:26:52 -0600
commit66710151a7130bc01de920a1a08431524c0ca513 (patch)
tree3fdda1fcd92d59ca67ba6557ee038034cbdf8f91 /numpy/linalg/linalg.py
parentda417627f6ffef5820d8c95140497ebde15c7e95 (diff)
downloadnumpy-66710151a7130bc01de920a1a08431524c0ca513.tar.gz
DOC: fix math formatting of np.linalg.lstsq docs
Replace double pipe with actual norm symbol. Also remove unnecessary space after hanging hyphen.
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r--numpy/linalg/linalg.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 189c64a39..47b1c4050 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -1010,7 +1010,7 @@ def eigvals(a):
See Also
--------
eig : eigenvalues and right eigenvectors of general arrays
- eigvalsh : eigenvalues of real symmetric or complex Hermitian
+ eigvalsh : eigenvalues of real symmetric or complex Hermitian
(conjugate symmetric) arrays.
eigh : eigenvalues and eigenvectors of real symmetric or complex
Hermitian (conjugate symmetric) arrays.
@@ -1214,7 +1214,7 @@ def eig(a):
--------
eigvals : eigenvalues of a non-symmetric array.
- eigh : eigenvalues and eigenvectors of a real symmetric or complex
+ eigh : eigenvalues and eigenvectors of a real symmetric or complex
Hermitian (conjugate symmetric) array.
eigvalsh : eigenvalues of a real symmetric or complex Hermitian
@@ -2133,9 +2133,9 @@ def lstsq(a, b, rcond="warn"):
"""
Return the least-squares solution to a linear matrix equation.
- Solves the equation `a x = b` by computing a vector `x` that
- minimizes the Euclidean 2-norm `|| b - a x ||^2`. The equation may
- be under-, well-, or over- determined (i.e., the number of
+ Solves the equation :math:`a x = b` by computing a vector `x` that
+ minimizes the Euclidean 2-norm :math:`\| b - a x \|_2`. The equation may
+ be under-, well-, or over-determined (i.e., the number of
linearly independent rows of `a` can be less than, equal to, or
greater than its number of linearly independent columns). If `a`
is square and of full rank, then `x` (but for round-off error) is