summaryrefslogtreecommitdiff
path: root/numpy/linalg/linalg.py
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2015-09-25 17:54:24 +0200
committerSebastian Berg <sebastian@sipsolutions.net>2015-09-25 18:05:28 +0200
commitae56c58db4207bd11100a9d24c9edf7694e34d67 (patch)
treeba9886cc3ef9c3d48553d3dfa31ed134853dc047 /numpy/linalg/linalg.py
parent1765438b5f68eeb5c9b920e8df2760dc8e908cae (diff)
downloadnumpy-ae56c58db4207bd11100a9d24c9edf7694e34d67.tar.gz
BUG,ENH: allow linalg.cond to work on a stack of matrices
This was buggy, because the underlying functions supported it partially but cond was not aware of this. Closes gh-6351
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r--numpy/linalg/linalg.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index a2405c180..f5cb3cb77 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -1012,9 +1012,9 @@ def eig(a):
w : (..., M) array
The eigenvalues, each repeated according to its multiplicity.
The eigenvalues are not necessarily ordered. The resulting
- array will be of complex type, unless the imaginary part is
- zero in which case it will be cast to a real type. When `a`
- is real the resulting eigenvalues will be real (0 imaginary
+ array will be of complex type, unless the imaginary part is
+ zero in which case it will be cast to a real type. When `a`
+ is real the resulting eigenvalues will be real (0 imaginary
part) or occur in conjugate pairs
v : (..., M, M) array
@@ -1382,7 +1382,7 @@ def cond(x, p=None):
Parameters
----------
- x : (M, N) array_like
+ x : (..., M, N) array_like
The matrix whose condition number is sought.
p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
Order of the norm:
@@ -1451,12 +1451,12 @@ def cond(x, p=None):
0.70710678118654746
"""
- x = asarray(x) # in case we have a matrix
+ x = asarray(x) # in case we have a matrix
if p is None:
s = svd(x, compute_uv=False)
- return s[0]/s[-1]
+ return s[..., 0]/s[..., -1]
else:
- return norm(x, p)*norm(inv(x), p)
+ return norm(x, p, axis=(-2, -1)) * norm(inv(x), p, axis=(-2, -1))
def matrix_rank(M, tol=None):