summaryrefslogtreecommitdiff
path: root/numpy/linalg/linalg.py
diff options
context:
space:
mode:
authorCharles Harris <charlesr.harris@gmail.com>2015-07-01 23:36:38 -0600
committerCharles Harris <charlesr.harris@gmail.com>2015-07-01 23:40:56 -0600
commitf5e9adbbf87903e42d03bb3dd5f86b70a89e930c (patch)
treed35f5116d0ce8c579b583cda4a3ee32c541fb6bd /numpy/linalg/linalg.py
parentf940a9e434e2ba39328361336711502895a42194 (diff)
downloadnumpy-f5e9adbbf87903e42d03bb3dd5f86b70a89e930c.tar.gz
DOC: Fix docstring warnings in documetation generation.
Most of these fixes involve putting blank lines around .. versionadded:: x.x.x and .. deprecated:: x.x.x Some of the examples were also fixed.
Diffstat (limited to 'numpy/linalg/linalg.py')
-rw-r--r--numpy/linalg/linalg.py18
1 files changed, 15 insertions, 3 deletions
diff --git a/numpy/linalg/linalg.py b/numpy/linalg/linalg.py
index 07a7a0d42..cf5b314ac 100644
--- a/numpy/linalg/linalg.py
+++ b/numpy/linalg/linalg.py
@@ -238,8 +238,8 @@ def tensorsolve(a, b, axes=None):
Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
the shape of that sub-tensor of `a` consisting of the appropriate
number of its rightmost indices, and must be such that
- ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
- 'square').
+ ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
+ 'square').
b : array_like
Right-hand tensor, which can be of any shape.
axes : tuple of ints, optional
@@ -321,6 +321,7 @@ def solve(a, b):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -480,6 +481,7 @@ def inv(a):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -559,6 +561,7 @@ def cholesky(a):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -860,6 +863,7 @@ def eigvals(a):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -950,6 +954,7 @@ def eigvalsh(a, UPLO='L'):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -1035,6 +1040,7 @@ def eig(a):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -1173,6 +1179,7 @@ def eigh(a, UPLO='L'):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -1282,6 +1289,7 @@ def svd(a, full_matrices=1, compute_uv=1):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -1653,10 +1661,12 @@ def slogdet(a):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
.. versionadded:: 1.6.0.
+
The determinant is computed via LU factorization using the LAPACK
routine z/dgetrf.
@@ -1732,6 +1742,7 @@ def det(a):
-----
.. versionadded:: 1.8.0
+
Broadcasting rules apply, see the `numpy.linalg` documentation for
details.
@@ -1983,11 +1994,12 @@ def norm(x, ord=None, axis=None, keepdims=False):
are computed. If `axis` is None then either a vector norm (when `x`
is 1-D) or a matrix norm (when `x` is 2-D) is returned.
keepdims : bool, optional
- .. versionadded:: 1.10.0
If this is set to True, the axes which are normed over are left in the
result as dimensions with size one. With this option the result will
broadcast correctly against the original `x`.
+ .. versionadded:: 1.10.0
+
Returns
-------
n : float or ndarray