diff options
author | Travis Oliphant <oliphant@enthought.com> | 2006-08-04 23:32:12 +0000 |
---|---|---|
committer | Travis Oliphant <oliphant@enthought.com> | 2006-08-04 23:32:12 +0000 |
commit | f1cca04886d4f63f7b1ed5b382986af3a9ee6a61 (patch) | |
tree | 053f566b31cb6edc24a41b800ec7f2972c4bca40 /numpy/linalg/old.py | |
parent | 8f26568de7cc97ac0dcedfd5061e08bb54770b61 (diff) | |
download | numpy-f1cca04886d4f63f7b1ed5b382986af3a9ee6a61.tar.gz |
Many name-changes in oldnumeric. This may break some numpy code that was using the oldnumeric interface.
Diffstat (limited to 'numpy/linalg/old.py')
-rw-r--r-- | numpy/linalg/old.py | 84 |
1 files changed, 0 insertions, 84 deletions
diff --git a/numpy/linalg/old.py b/numpy/linalg/old.py deleted file mode 100644 index 2ac1e9d48..000000000 --- a/numpy/linalg/old.py +++ /dev/null @@ -1,84 +0,0 @@ - -"""Backward compatible with LinearAlgebra from Numeric -""" -# This module is a lite version of the linalg.py module in SciPy which contains -# high-level Python interface to the LAPACK library. The lite version -# only accesses the following LAPACK functions: dgesv, zgesv, dgeev, -# zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, dpotrf. - - -__all__ = ['LinAlgError', 'solve_linear_equations', - 'inverse', 'cholesky_decomposition', 'eigenvalues', - 'Heigenvalues', 'generalized_inverse', - 'determinant', 'singular_value_decomposition', - 'eigenvectors', 'Heigenvectors', - 'linear_least_squares' - ] - -from numpy.core import transpose -import linalg - -# Linear equations - -LinAlgError = linalg.LinAlgError - -def solve_linear_equations(a, b): - return linalg.solve(a,b) - -# Matrix inversion - -def inverse(a): - return linalg.inv(a) - -# Cholesky decomposition - -def cholesky_decomposition(a): - return linalg.cholesky(a) - -# Eigenvalues - -def eigenvalues(a): - return linalg.eigvals(a) - -def Heigenvalues(a, UPLO='L'): - return linalg.eigvalsh(a,UPLO) - -# Eigenvectors - -def eigenvectors(A): - w, v = linalg.eig(A) - return w, transpose(v) - -def Heigenvectors(A): - w, v = linalg.eigh(A) - return w, transpose(v) - -# Generalized inverse - -def generalized_inverse(a, rcond = 1.e-10): - return linalg.pinv(a, rcond) - -# Determinant - -def determinant(a): - return linalg.det(a) - -# Linear Least Squares - -def linear_least_squares(a, b, rcond=1.e-10): - """returns x,resids,rank,s -where x minimizes 2-norm(|b - Ax|) - resids is the sum square residuals - rank is the rank of A - s is the rank of the singular values of A in descending order - -If b is a matrix then x is also a matrix with corresponding columns. -If the rank of A is less than the number of columns of A or greater than -the number of rows, then residuals will be returned as an empty array -otherwise resids = sum((b-dot(A,x)**2). -Singular values less than s[0]*rcond are treated as zero. -""" - return linalg.lstsq(a,b,rcond) - -def singular_value_decomposition(A, full_matrices=0): - return linalg.svd(A, full_matrices) |