summaryrefslogtreecommitdiff
path: root/numpy/linalg/tests
diff options
context:
space:
mode:
authorSebastian Berg <sebastian@sipsolutions.net>2016-06-19 14:18:35 +0200
committerSebastian Berg <sebastian@sipsolutions.net>2016-09-02 10:10:55 +0200
commit308161c80f4450f05f8399343034308bd18b4e1e (patch)
treeba3778d778e1222e93246ca7842e8f060e411173 /numpy/linalg/tests
parentc1ddf841f6a48248b946a990ae750505b8b91686 (diff)
downloadnumpy-308161c80f4450f05f8399343034308bd18b4e1e.tar.gz
TST: Use new warnings context manager in all tests
In some places, just remove aparently unnecessary filters. After this, all cases of ignore filters should be removed from the tests, making testing (even multiple runs) normally fully predictable.
Diffstat (limited to 'numpy/linalg/tests')
-rw-r--r--numpy/linalg/tests/test_linalg.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py
index a89378acd..a353271de 100644
--- a/numpy/linalg/tests/test_linalg.py
+++ b/numpy/linalg/tests/test_linalg.py
@@ -18,7 +18,7 @@ from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_array_equal,
assert_almost_equal, assert_allclose, run_module_suite,
- dec, SkipTest
+ dec, SkipTest, suppress_warnings
)
@@ -861,8 +861,8 @@ class _TestNorm(object):
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 0.0)
- with warnings.catch_warnings():
- warnings.simplefilter("ignore", RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 0.0)
@@ -906,8 +906,8 @@ class _TestNorm(object):
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 2.0)
- with warnings.catch_warnings():
- warnings.simplefilter("ignore", RuntimeWarning)
+ with suppress_warnings() as sup:
+ sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 1.0)