diff options
author | DWesl <22566757+DWesl@users.noreply.github.com> | 2021-12-27 00:20:14 -0500 |
---|---|---|
committer | DWesl <22566757+DWesl@users.noreply.github.com> | 2021-12-27 00:20:14 -0500 |
commit | 8eabfc75b171f7605be2267144b6bd18be94f113 (patch) | |
tree | 093f81335986b4781aad3b5908e180fef0fbc59f /numpy/linalg/tests | |
parent | 6dfbe0340ac409094bb907de8464264916924ddd (diff) | |
download | numpy-8eabfc75b171f7605be2267144b6bd18be94f113.tar.gz |
CI: Run Cygwin CI with Netlib reference BLAS.
Diffstat (limited to 'numpy/linalg/tests')
-rw-r--r-- | numpy/linalg/tests/test_linalg.py | 15 |
1 files changed, 0 insertions, 15 deletions
diff --git a/numpy/linalg/tests/test_linalg.py b/numpy/linalg/tests/test_linalg.py index 5f9f3b920..c0310762a 100644 --- a/numpy/linalg/tests/test_linalg.py +++ b/numpy/linalg/tests/test_linalg.py @@ -467,11 +467,6 @@ class TestSolve(SolveCases): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.solve(x, x).dtype, dtype) - @pytest.mark.xfail(sys.platform == 'cygwin', - reason="Consistently fails on CI.") - def test_sq_cases(self): - super().test_sq_cases() - def test_0_size(self): class ArraySubclass(np.ndarray): pass @@ -539,11 +534,6 @@ class TestInv(InvCases): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.inv(x).dtype, dtype) - @pytest.mark.xfail(sys.platform == 'cygwin', - reason="Consistently fails on CI.") - def test_sq_cases(self): - super().test_sq_cases() - def test_0_size(self): # Check that all kinds of 0-sized arrays work class ArraySubclass(np.ndarray): @@ -1783,9 +1773,6 @@ class TestQR: class TestCholesky: # TODO: are there no other tests for cholesky? - @pytest.mark.xfail( - sys.platform == 'cygwin', reason="Consistently fails in CI" - ) @pytest.mark.parametrize( 'shape', [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)] ) @@ -2129,8 +2116,6 @@ class TestTensorsolve: b = np.ones(a.shape[:2]) linalg.tensorsolve(a, b, axes=axes) - @pytest.mark.xfail(sys.platform == 'cygwin', - reason="Consistently fails on CI") @pytest.mark.parametrize("shape", [(2, 3, 6), (3, 4, 4, 3), (0, 3, 3, 0)], ) |