summaryrefslogtreecommitdiff
path: root/numpy/linalg/tests
diff options
context:
space:
mode:
authorPauli Virtanen <pav@iki.fi>2013-04-10 19:35:13 +0300
committerPauli Virtanen <pav@iki.fi>2013-04-10 22:48:12 +0300
commit9c00887ba60c0c3c4ae7ad349c6f43831c3ae353 (patch)
tree9ef486fffb47a605e09edfb84ced7f17c63bdd3e /numpy/linalg/tests
parent9bfa19b11f38b5fe710d872db6a8628fc6a72359 (diff)
downloadnumpy-9c00887ba60c0c3c4ae7ad349c6f43831c3ae353.tar.gz
MAINT: move umath_linalg under numpy/linalg and use the same lapack_lite
Also, link umath_linalg against the system BLAS/LAPACK if available.
Diffstat (limited to 'numpy/linalg/tests')
-rw-r--r--numpy/linalg/tests/test_gufuncs_linalg.py500
1 files changed, 500 insertions, 0 deletions
diff --git a/numpy/linalg/tests/test_gufuncs_linalg.py b/numpy/linalg/tests/test_gufuncs_linalg.py
new file mode 100644
index 000000000..096d48a1d
--- /dev/null
+++ b/numpy/linalg/tests/test_gufuncs_linalg.py
@@ -0,0 +1,500 @@
+"""
+Test functions for gufuncs_linalg module
+Heavily inspired (ripped in part) test_linalg
+"""
+
+
+################################################################################
+# The following functions are implemented in the module "gufuncs_linalg"
+#
+# category "linalg"
+# - inv (TestInv)
+# - poinv (TestPoinv)
+# - det (TestDet)
+# - slogdet (TestDet)
+# - eig (TestEig)
+# - eigh (TestEigh)
+# - eigvals (TestEigvals)
+# - eigvalsh (TestEigvalsh)
+# - cholesky
+# - solve (TestSolve)
+# - chosolve (TestChosolve)
+# - svd (TestSVD)
+
+# ** unimplemented **
+# - qr
+# - matrix_power
+# - matrix_rank
+# - pinv
+# - lstsq
+# - tensorinv
+# - tensorsolve
+# - norm
+# - cond
+#
+# category "inspired by pdl"
+# - quadratic_form
+# - matrix_multiply3
+# - add3 (TestAdd3)
+# - multiply3 (TestMultiply3)
+# - multiply3_add (TestMultiply3Add)
+# - multiply_add (TestMultiplyAdd)
+# - multiply_add2 (TestMultiplyAdd2)
+# - multiply4 (TestMultiply4)
+# - multiply4_add (TestMultiply4Add)
+#
+# category "others"
+# - convolve
+# - inner1d
+# - innerwt
+# - matrix_multiply
+
+from nose.plugins.skip import Skip, SkipTest
+import numpy as np
+
+from numpy.testing import (TestCase, assert_, assert_equal, assert_raises,
+ assert_array_equal, assert_almost_equal,
+ run_module_suite)
+
+from numpy import array, single, double, csingle, cdouble, dot, identity
+from numpy import multiply, inf
+import numpy.linalg._gufuncs_linalg as gula
+
+old_assert_almost_equal = assert_almost_equal
+
+def assert_almost_equal(a, b, **kw):
+ if a.dtype.type in (single, csingle):
+ decimal = 5
+ else:
+ decimal = 10
+ old_assert_almost_equal(a, b, decimal = decimal, **kw)
+
+
+def assert_valid_eigen_no_broadcast(M, w, v, **kw):
+ lhs = gula.matrix_multiply(M,v)
+ rhs = w*v
+ assert_almost_equal(lhs, rhs, **kw)
+
+
+def assert_valid_eigen_recurse(M, w, v, **kw):
+ """check that w and v are valid eigenvalues/eigenvectors for matrix M
+ broadcast"""
+ if len(M.shape) > 2:
+ for i in range(M.shape[0]):
+ assert_valid_eigen_recurse(M[i], w[i], v[i], **kw)
+ else:
+ if len(M.shape) == 2:
+ assert_valid_eigen_no_broadcast(M, w, v, **kw)
+ else:
+ raise AssertionError('Not enough dimensions')
+
+
+def assert_valid_eigen(M, w, v, **kw):
+ if np.any(np.isnan(M)):
+ raise AssertionError('nan found in matrix')
+ if np.any(np.isnan(w)):
+ raise AssertionError('nan found in eigenvalues')
+ if np.any(np.isnan(v)):
+ raise AssertionError('nan found in eigenvectors')
+
+ assert_valid_eigen_recurse(M, w, v, **kw)
+
+
+def assert_valid_eigenvals_no_broadcast(M, w, **kw):
+ ident = np.eye(M.shape[0], dtype=M.dtype)
+ for i in range(w.shape[0]):
+ assert_almost_equal(gula.det(M - w[i]*ident), 0.0, **kw)
+
+
+def assert_valid_eigenvals_recurse(M, w, **kw):
+ if len(M.shape) > 2:
+ for i in range(M.shape[0]):
+ assert_valid_eigenvals_recurse(M[i], w[i], **kw)
+ else:
+ if len(M.shape) == 2:
+ assert_valid_eigenvals_no_broadcast(M, w, **kw)
+ else:
+ raise AssertionError('Not enough dimensions')
+
+
+def assert_valid_eigenvals(M, w, **kw):
+ if np.any(np.isnan(M)):
+ raise AssertionError('nan found in matrix')
+ if np.any(np.isnan(w)):
+ raise AssertionError('nan found in eigenvalues')
+ assert_valid_eigenvals_recurse(M, w, **kw)
+
+
+class MatrixGenerator(object):
+ def real_matrices(self):
+ a = [[1,2],
+ [3,4]]
+
+ b = [[4,3],
+ [2,1]]
+
+ return a, b
+
+ def real_symmetric_matrices(self):
+ a = [[ 2 ,-1],
+ [-1 , 2]]
+
+ b = [[4,3],
+ [2,1]]
+
+ return a, b
+
+ def complex_matrices(self):
+ a = [[1+2j,2+3j],
+ [3+4j,4+5j]]
+
+ b = [[4+3j,3+2j],
+ [2+1j,1+0j]]
+
+ return a, b
+
+ def complex_hermitian_matrices(self):
+ a = [[2,-1],
+ [-1, 2]]
+
+ b = [[4+3j,3+2j],
+ [2-1j,1+0j]]
+
+ return a, b
+
+ def real_matrices_vector(self):
+ a, b = self.real_matrices()
+ return [a], [b]
+
+ def real_symmetric_matrices_vector(self):
+ a, b = self.real_symmetric_matrices()
+ return [a], [b]
+
+ def complex_matrices_vector(self):
+ a, b = self.complex_matrices()
+ return [a], [b]
+
+ def complex_hermitian_matrices_vector(self):
+ a, b = self.complex_hermitian_matrices()
+ return [a], [b]
+
+
+class GeneralTestCase(MatrixGenerator):
+ def test_single(self):
+ a,b = self.real_matrices()
+ self.do(array(a, dtype=single),
+ array(b, dtype=single))
+
+ def test_double(self):
+ a, b = self.real_matrices()
+ self.do(array(a, dtype=double),
+ array(b, dtype=double))
+
+ def test_csingle(self):
+ a, b = self.complex_matrices()
+ self.do(array(a, dtype=csingle),
+ array(b, dtype=csingle))
+
+ def test_cdouble(self):
+ a, b = self.complex_matrices()
+ self.do(array(a, dtype=cdouble),
+ array(b, dtype=cdouble))
+
+ def test_vector_single(self):
+ a,b = self.real_matrices_vector()
+ self.do(array(a, dtype=single),
+ array(b, dtype=single))
+
+ def test_vector_double(self):
+ a, b = self.real_matrices_vector()
+ self.do(array(a, dtype=double),
+ array(b, dtype=double))
+
+ def test_vector_csingle(self):
+ a, b = self.complex_matrices_vector()
+ self.do(array(a, dtype=csingle),
+ array(b, dtype=csingle))
+
+ def test_vector_cdouble(self):
+ a, b = self.complex_matrices_vector()
+ self.do(array(a, dtype=cdouble),
+ array(b, dtype=cdouble))
+
+
+class HermitianTestCase(MatrixGenerator):
+ def test_single(self):
+ a,b = self.real_symmetric_matrices()
+ self.do(array(a, dtype=single),
+ array(b, dtype=single))
+
+ def test_double(self):
+ a, b = self.real_symmetric_matrices()
+ self.do(array(a, dtype=double),
+ array(b, dtype=double))
+
+ def test_csingle(self):
+ a, b = self.complex_hermitian_matrices()
+ self.do(array(a, dtype=csingle),
+ array(b, dtype=csingle))
+
+ def test_cdouble(self):
+ a, b = self.complex_hermitian_matrices()
+ self.do(array(a, dtype=cdouble),
+ array(b, dtype=cdouble))
+
+ def test_vector_single(self):
+ a,b = self.real_symmetric_matrices_vector()
+ self.do(array(a, dtype=single),
+ array(b, dtype=single))
+
+ def test_vector_double(self):
+ a, b = self.real_symmetric_matrices_vector()
+ self.do(array(a, dtype=double),
+ array(b, dtype=double))
+
+ def test_vector_csingle(self):
+ a, b = self.complex_hermitian_matrices_vector()
+ self.do(array(a, dtype=csingle),
+ array(b, dtype=csingle))
+
+ def test_vector_cdouble(self):
+ a, b = self.complex_hermitian_matrices_vector()
+ self.do(array(a, dtype=cdouble),
+ array(b, dtype=cdouble))
+
+
+class TestMatrixMultiply(GeneralTestCase):
+ def do(self, a, b):
+ res = gula.matrix_multiply(a,b)
+ if a.ndim == 2:
+ assert_almost_equal(res, np.dot(a,b))
+ else:
+ assert_almost_equal(res[0], np.dot(a[0],b[0]))
+
+ def test_column_matrix(self):
+ A = np.arange(2*2).reshape((2,2))
+ B = np.arange(2*1).reshape((2,1))
+ res = gula.matrix_multiply(A,B)
+ assert_almost_equal(res, np.dot(A,B))
+
+class TestInv(GeneralTestCase, TestCase):
+ def do(self, a, b):
+ a_inv = gula.inv(a)
+ ident = identity(a.shape[-1])
+ if 3 == len(a.shape):
+ ident = ident.reshape((1, ident.shape[0], ident.shape[1]))
+ assert_almost_equal(gula.matrix_multiply(a, a_inv), ident)
+
+
+class TestPoinv(HermitianTestCase, TestCase):
+ def do(self, a, b):
+ a_inv = gula.poinv(a)
+ ident = identity(a.shape[-1])
+ if 3 == len(a.shape):
+ ident = ident.reshape((1,ident.shape[0], ident.shape[1]))
+
+ assert_almost_equal(a_inv, gula.inv(a))
+ assert_almost_equal(gula.matrix_multiply(a, a_inv), ident)
+
+
+class TestDet(GeneralTestCase, TestCase):
+ def do(self, a, b):
+ d = gula.det(a)
+ s, ld = gula.slogdet(a)
+ assert_almost_equal(s * np.exp(ld), d)
+
+ if np.csingle == a.dtype.type or np.single == a.dtype.type:
+ cmp_type=np.csingle
+ else:
+ cmp_type=np.cdouble
+
+ ev = gula.eigvals(a.astype(cmp_type))
+ assert_almost_equal(d.astype(cmp_type),
+ multiply.reduce(ev.astype(cmp_type),
+ axis=(ev.ndim-1)))
+ if s != 0:
+ assert_almost_equal(np.abs(s), 1)
+ else:
+ assert_equal(ld, -inf)
+
+ def test_zero(self):
+ assert_equal(gula.det(array([[0.0]], dtype=single)), 0.0)
+ assert_equal(gula.det(array([[0.0]], dtype=double)), 0.0)
+ assert_equal(gula.det(array([[0.0]], dtype=csingle)), 0.0)
+ assert_equal(gula.det(array([[0.0]], dtype=cdouble)), 0.0)
+
+ assert_equal(gula.slogdet(array([[0.0]], dtype=single)), (0.0, -inf))
+ assert_equal(gula.slogdet(array([[0.0]], dtype=double)), (0.0, -inf))
+ assert_equal(gula.slogdet(array([[0.0]], dtype=csingle)), (0.0, -inf))
+ assert_equal(gula.slogdet(array([[0.0]], dtype=cdouble)), (0.0, -inf))
+
+ def test_types(self):
+ for typ in [(single, single),
+ (double, double),
+ (csingle, single),
+ (cdouble, double)]:
+ for x in [ [0], [[0]], [[[0]]] ]:
+ assert_equal(gula.det(array(x, dtype=typ[0])).dtype, typ[0])
+ assert_equal(gula.slogdet(array(x, dtype=typ[0]))[0].dtype, typ[0])
+ assert_equal(gula.slogdet(array(x, dtype=typ[0]))[1].dtype, typ[1])
+
+
+class TestEig(GeneralTestCase, TestCase):
+ def do(self, a, b):
+ evalues, evectors = gula.eig(a)
+ assert_valid_eigenvals(a, evalues)
+ assert_valid_eigen(a, evalues, evectors)
+ ev = gula.eigvals(a)
+ assert_valid_eigenvals(a, evalues)
+ assert_almost_equal(ev, evalues)
+
+
+class TestEigh(HermitianTestCase, TestCase):
+ def do(self, a, b):
+ evalues_lo, evectors_lo = gula.eigh(a, UPLO='L')
+ evalues_up, evectors_up = gula.eigh(a, UPLO='U')
+
+ assert_valid_eigenvals(a, evalues_lo)
+ assert_valid_eigenvals(a, evalues_up)
+ assert_valid_eigen(a, evalues_lo, evectors_lo)
+ assert_valid_eigen(a, evalues_up, evectors_up)
+ assert_almost_equal(evalues_lo, evalues_up)
+ assert_almost_equal(evectors_lo, evectors_up)
+
+ ev_lo = gula.eigvalsh(a, UPLO='L')
+ ev_up = gula.eigvalsh(a, UPLO='U')
+ assert_valid_eigenvals(a, ev_lo)
+ assert_valid_eigenvals(a, ev_up)
+ assert_almost_equal(ev_lo, evalues_lo)
+ assert_almost_equal(ev_up, evalues_up)
+
+
+class TestSolve(GeneralTestCase,TestCase):
+ def do(self, a, b):
+ x = gula.solve(a,b)
+ assert_almost_equal(b, gula.matrix_multiply(a,x))
+
+
+class TestChosolve(HermitianTestCase, TestCase):
+ def do(self, a, b):
+ """
+ inner1d not defined for complex types.
+ todo: implement alternative test
+ """
+ if csingle == a.dtype or cdouble == a.dtype:
+ raise SkipTest
+
+ x_lo = gula.chosolve(a, b, UPLO='L')
+ x_up = gula.chosolve(a, b, UPLO='U')
+ assert_almost_equal(x_lo, x_up)
+ # inner1d not defined for complex types
+ # todo: implement alternative test
+ assert_almost_equal(b, gula.matrix_multiply(a,x_lo))
+ assert_almost_equal(b, gula.matrix_multiply(a,x_up))
+
+
+class TestSVD(GeneralTestCase, TestCase):
+ def do(self, a, b):
+ """ still work in progress """
+ raise SkipTest
+ u, s, vt = gula.svd(a, 0)
+ assert_almost_equal(a, dot(multiply(u, s), vt))
+
+"""
+class TestCholesky(HermitianTestCase, TestCase):
+ def do(self, a, b):
+ pass
+"""
+
+################################################################################
+# ufuncs inspired by pdl
+# - add3
+# - multiply3
+# - multiply3_add
+# - multiply_add
+# - multiply_add2
+# - multiply4
+# - multiply4_add
+
+class UfuncTestCase(object):
+ parameter = range(0,10)
+
+ def _check_for_type(self, typ):
+ a = np.array(self.__class__.parameter, dtype=typ)
+ self.do(a)
+
+ def _check_for_type_vector(self, typ):
+ parameter = self.__class__.parameter
+ a = np.array([parameter, parameter], dtype=typ)
+ self.do(a)
+
+ def test_single(self):
+ self._check_for_type(single)
+
+ def test_double(self):
+ self._check_for_type(double)
+
+ def test_csingle(self):
+ self._check_for_type(csingle)
+
+ def test_cdouble(self):
+ self._check_for_type(cdouble)
+
+ def test_single_vector(self):
+ self._check_for_type_vector(single)
+
+ def test_double_vector(self):
+ self._check_for_type_vector(double)
+
+ def test_csingle_vector(self):
+ self._check_for_type_vector(csingle)
+
+ def test_cdouble_vector(self):
+ self._check_for_type_vector(cdouble)
+
+
+class TestAdd3(UfuncTestCase, TestCase):
+ def do(self, a):
+ r = gula.add3(a,a,a)
+ assert_almost_equal(r, a+a+a)
+
+
+class TestMultiply3(UfuncTestCase, TestCase):
+ def do(self, a):
+ r = gula.multiply3(a,a,a)
+ assert_almost_equal(r, a*a*a)
+
+
+class TestMultiply3Add(UfuncTestCase, TestCase):
+ def do(self, a):
+ r = gula.multiply3_add(a,a,a,a)
+ assert_almost_equal(r, a*a*a+a)
+
+
+class TestMultiplyAdd(UfuncTestCase, TestCase):
+ def do(self, a):
+ r = gula.multiply_add(a,a,a)
+ assert_almost_equal(r, a*a+a)
+
+
+class TestMultiplyAdd2(UfuncTestCase, TestCase):
+ def do(self, a):
+ r = gula.multiply_add2(a,a,a,a)
+ assert_almost_equal(r, a*a+a+a)
+
+
+class TestMultiply4(UfuncTestCase, TestCase):
+ def do(self, a):
+ r = gula.multiply4(a,a,a,a)
+ assert_almost_equal(r, a*a*a*a)
+
+
+class TestMultiply4_add(UfuncTestCase, TestCase):
+ def do(self, a):
+ r = gula.multiply4_add(a,a,a,a,a)
+ assert_almost_equal(r, a*a*a*a+a)
+
+
+if __name__ == "__main__":
+ print 'testing gufuncs_linalg; gufuncs version: %s' % gula._impl.__version__
+ run_module_suite()