summaryrefslogtreecommitdiff
path: root/numpy/ma/extras.py
diff options
context:
space:
mode:
authorpierregm <pierregm@localhost>2008-08-04 20:16:48 +0000
committerpierregm <pierregm@localhost>2008-08-04 20:16:48 +0000
commitaf071cfdea7eddf29ae08fba2bd5775fb594d8df (patch)
tree5aa3cf29a014da64ffdeaadc82388bb8060d0256 /numpy/ma/extras.py
parent84dbd03a91eac58006fc5d4bd9d10f23c6a78ca0 (diff)
downloadnumpy-af071cfdea7eddf29ae08fba2bd5775fb594d8df.tar.gz
* extras: fixed the definition of median
Diffstat (limited to 'numpy/ma/extras.py')
-rw-r--r--numpy/ma/extras.py19
1 files changed, 8 insertions, 11 deletions
diff --git a/numpy/ma/extras.py b/numpy/ma/extras.py
index 86046041f..c4259ecee 100644
--- a/numpy/ma/extras.py
+++ b/numpy/ma/extras.py
@@ -360,21 +360,18 @@ def average(a, axis=None, weights=None, returned=False):
-def median(a, axis=0, out=None, overwrite_input=False):
+def median(a, axis=None, out=None, overwrite_input=False):
"""Compute the median along the specified axis.
- Returns the median of the array elements. The median is taken
- over the first axis of the array by default, otherwise over
- the specified axis.
+ Returns the median of the array elements.
Parameters
----------
a : array-like
Input array or object that can be converted to an array
- axis : {int, None}, optional
- Axis along which the medians are computed. The default is to
- compute the median along the first dimension. axis=None
- returns the median of the flattened array
+ axis : {None, int}, optional
+ Axis along which the medians are computed. The default (axis=None) is to
+ compute the median along a flattened version of the array.
out : {None, ndarray}, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
@@ -402,9 +399,9 @@ def median(a, axis=0, out=None, overwrite_input=False):
Notes
-----
- Given a vector V length N, the median of V is the middle value of
- a sorted copy of V (Vs) - i.e. Vs[(N-1)/2], when N is odd. It is
- the mean of the two middle values of Vs, when N is even.
+ Given a vector V with N non masked values, the median of V is the middle
+ value of a sorted copy of V (Vs) - i.e. Vs[(N-1)/2], when N is odd, or
+ {Vs[N/2 - 1] + Vs[N/2]}/2. when N is even.
"""
def _median1D(data):