summaryrefslogtreecommitdiff
path: root/numpy/ma/tests/test_extras.py
diff options
context:
space:
mode:
authorpierregm <pierregm@localhost>2008-08-07 14:50:52 +0000
committerpierregm <pierregm@localhost>2008-08-07 14:50:52 +0000
commit0bdef198361c01a820c69f34580b2da3e3eebbfb (patch)
treede6b5b77ab75220f4885166f4066b8906b98ddc4 /numpy/ma/tests/test_extras.py
parent469c4d3d5417f5693ad8e326d7069cdec7c92663 (diff)
downloadnumpy-0bdef198361c01a820c69f34580b2da3e3eebbfb.tar.gz
* core : minor doc formatting
* test_extras: switched to assert_almost_equal in TestCov and TestCorrcoef
Diffstat (limited to 'numpy/ma/tests/test_extras.py')
-rw-r--r--numpy/ma/tests/test_extras.py50
1 files changed, 26 insertions, 24 deletions
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
index ff061d8dd..9fd501aaa 100644
--- a/numpy/ma/tests/test_extras.py
+++ b/numpy/ma/tests/test_extras.py
@@ -363,18 +363,18 @@ class TestCov(TestCase):
def test_1d_wo_missing(self):
"Test cov on 1D variable w/o missing values"
x = self.data
- assert_equal(np.cov(x), cov(x))
- assert_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
- assert_equal(np.cov(x, rowvar=False, bias=True),
- cov(x, rowvar=False, bias=True))
+ assert_almost_equal(np.cov(x), cov(x))
+ assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
+ assert_almost_equal(np.cov(x, rowvar=False, bias=True),
+ cov(x, rowvar=False, bias=True))
#
def test_2d_wo_missing(self):
"Test cov on 1 2D variable w/o missing values"
x = self.data.reshape(3,4)
- assert_equal(np.cov(x), cov(x))
- assert_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
- assert_equal(np.cov(x, rowvar=False, bias=True),
- cov(x, rowvar=False, bias=True))
+ assert_almost_equal(np.cov(x), cov(x))
+ assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
+ assert_almost_equal(np.cov(x, rowvar=False, bias=True),
+ cov(x, rowvar=False, bias=True))
#
def test_1d_w_missing(self):
"Test cov 1 1D variable w/missing values"
@@ -395,10 +395,10 @@ class TestCov(TestCase):
# 2 1D variables w/ missing values
nx = x[1:-1]
assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1]))
- assert_equal(np.cov(nx, nx[::-1], rowvar=False),
- cov(x, x[::-1], rowvar=False))
- assert_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
- cov(x, x[::-1], rowvar=False, bias=True))
+ assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False),
+ cov(x, x[::-1], rowvar=False))
+ assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True),
+ cov(x, x[::-1], rowvar=False, bias=True))
#
def test_2d_w_missing(self):
"Test cov on 2D variable w/ missing value"
@@ -427,18 +427,20 @@ class TestCorrcoef(TestCase):
def test_1d_wo_missing(self):
"Test cov on 1D variable w/o missing values"
x = self.data
- assert_equal(np.corrcoef(x), corrcoef(x))
- assert_equal(np.corrcoef(x, rowvar=False), corrcoef(x, rowvar=False))
- assert_equal(np.corrcoef(x, rowvar=False, bias=True),
- corrcoef(x, rowvar=False, bias=True))
+ assert_almost_equal(np.corrcoef(x), corrcoef(x))
+ assert_almost_equal(np.corrcoef(x, rowvar=False),
+ corrcoef(x, rowvar=False))
+ assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
+ corrcoef(x, rowvar=False, bias=True))
#
def test_2d_wo_missing(self):
"Test corrcoef on 1 2D variable w/o missing values"
x = self.data.reshape(3,4)
- assert_equal(np.corrcoef(x), corrcoef(x))
- assert_equal(np.corrcoef(x, rowvar=False), corrcoef(x, rowvar=False))
- assert_equal(np.corrcoef(x, rowvar=False, bias=True),
- corrcoef(x, rowvar=False, bias=True))
+ assert_almost_equal(np.corrcoef(x), corrcoef(x))
+ assert_almost_equal(np.corrcoef(x, rowvar=False),
+ corrcoef(x, rowvar=False))
+ assert_almost_equal(np.corrcoef(x, rowvar=False, bias=True),
+ corrcoef(x, rowvar=False, bias=True))
#
def test_1d_w_missing(self):
"Test corrcoef 1 1D variable w/missing values"
@@ -459,10 +461,10 @@ class TestCorrcoef(TestCase):
# 2 1D variables w/ missing values
nx = x[1:-1]
assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1]))
- assert_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
- corrcoef(x, x[::-1], rowvar=False))
- assert_equal(np.corrcoef(nx, nx[::-1], rowvar=False, bias=True),
- corrcoef(x, x[::-1], rowvar=False, bias=True))
+ assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False),
+ corrcoef(x, x[::-1], rowvar=False))
+ assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False, bias=True),
+ corrcoef(x, x[::-1], rowvar=False, bias=True))
#
def test_2d_w_missing(self):
"Test corrcoef on 2D variable w/ missing value"