diff options
author | pierregm <pierregm@localhost> | 2010-05-16 23:31:21 +0000 |
---|---|---|
committer | pierregm <pierregm@localhost> | 2010-05-16 23:31:21 +0000 |
commit | ea2be6e15d024fab1ef41713ef9eab4605c4ea3e (patch) | |
tree | af8bce8a14882752e720e78a5410105e409bd331 /numpy/ma/tests/test_extras.py | |
parent | 97a38c4a4233fb133b2f2fa8b4fad9e65657f572 (diff) | |
download | numpy-ea2be6e15d024fab1ef41713ef9eab4605c4ea3e.tar.gz |
* Added `apply_over_axes` as requested in ticket #1480
Diffstat (limited to 'numpy/ma/tests/test_extras.py')
-rw-r--r-- | numpy/ma/tests/test_extras.py | 434 |
1 files changed, 223 insertions, 211 deletions
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py index 9e2c48b50..d6cda7e70 100644 --- a/numpy/ma/tests/test_extras.py +++ b/numpy/ma/tests/test_extras.py @@ -9,7 +9,7 @@ Adapted from the original test_ma by Pierre Gerard-Marchant __author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)" __version__ = '1.0' __revision__ = "$Revision: 3473 $" -__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' +__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $' import numpy as np from numpy.testing import TestCase, run_module_suite @@ -31,13 +31,13 @@ class TestGeneric(TestCase): test = masked_all((2,), dtype=dt) control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt) assert_equal(test, control) - test = masked_all((2,2), dtype=dt) + test = masked_all((2, 2), dtype=dt) control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]], mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]], dtype=dt) assert_equal(test, control) # Nested dtype - dt = np.dtype([('a','f'), ('b', [('ba', 'f'), ('bb', 'f')])]) + dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) test = masked_all((2,), dtype=dt) control = array([(1, (1, 1)), (1, (1, 1))], mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) @@ -46,7 +46,7 @@ class TestGeneric(TestCase): control = array([(1, (1, 1)), (1, (1, 1))], mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) assert_equal(test, control) - test = masked_all((1,1), dtype=dt) + test = masked_all((1, 1), dtype=dt) control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt) assert_equal(test, control) @@ -65,7 +65,7 @@ class TestGeneric(TestCase): control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt) assert_equal(test, control) # Nested dtype - dt = np.dtype([('a','f'), ('b', [('ba', 'f'), ('bb', 'f')])]) + dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])]) control = array([(1, (1, 1)), (1, (1, 1))], mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt) test = masked_all_like(control) @@ -85,7 +85,7 @@ class TestGeneric(TestCase): a = masked_array(np.arange(10)) a[[0, 1, 2, 6, 8, 9]] = masked test = clump_unmasked(a) - control = [slice(3, 6), slice(7, 8),] + control = [slice(3, 6), slice(7, 8), ] assert_equal(test, control) @@ -94,7 +94,7 @@ class TestAverage(TestCase): "Several tests of average. Why so many ? Good point..." def test_testAverage1(self): "Test of average." - ott = array([0.,1.,2.,3.], mask=[True, False, False, False]) + ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) assert_equal(2.0, average(ott, axis=0)) assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.])) result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1) @@ -104,28 +104,28 @@ class TestAverage(TestCase): assert_equal(average(ott, axis=0).mask, [True]) ott = array([0., 1., 2., 3.], mask=[True, False, False, False]) ott = ott.reshape(2, 2) - ott[:,1] = masked + ott[:, 1] = masked assert_equal(average(ott, axis=0), [2.0, 0.0]) assert_equal(average(ott, axis=1).mask[0], [True]) - assert_equal([2.,0.], average(ott, axis=0)) + assert_equal([2., 0.], average(ott, axis=0)) result, wts = average(ott, axis=0, returned=1) assert_equal(wts, [1., 0.]) def test_testAverage2(self): "More tests of average." - w1 = [0,1,1,1,1,0] - w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]] + w1 = [0, 1, 1, 1, 1, 0] + w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = arange(6, dtype=float_) assert_equal(average(x, axis=0), 2.5) assert_equal(average(x, axis=0, weights=w1), 2.5) - y = array([arange(6, dtype=float_), 2.0*arange(6)]) - assert_equal(average(y, None), np.add.reduce(np.arange(6))*3./12.) - assert_equal(average(y, axis=0), np.arange(6) * 3./2.) + y = array([arange(6, dtype=float_), 2.0 * arange(6)]) + assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) + assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) - assert_equal(average(y, None, weights=w2), 20./6.) + assert_equal(average(y, None, weights=w2), 20. / 6.) assert_equal(average(y, axis=0, weights=w2), - [0.,1.,2.,3.,4.,10.]) + [0., 1., 2., 3., 4., 10.]) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) m1 = zeros(6) @@ -139,11 +139,11 @@ class TestAverage(TestCase): assert_equal(average(masked_array(x, m5), axis=0), 0.0) assert_equal(count(average(masked_array(x, m4), axis=0)), 0) z = masked_array(y, m3) - assert_equal(average(z, None), 20./6.) - assert_equal(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5]) + assert_equal(average(z, None), 20. / 6.) + assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) assert_equal(average(z, axis=1), [2.5, 5.0]) - assert_equal(average(z,axis=0, weights=w2), - [0.,1., 99., 99., 4.0, 10.0]) + assert_equal(average(z, axis=0, weights=w2), + [0., 1., 99., 99., 4.0, 10.0]) def test_testAverage3(self): "Yet more tests of average!" @@ -159,13 +159,13 @@ class TestAverage(TestCase): r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1) assert_equal(shape(w2), shape(r2)) a2d = array([[1, 2], [0, 4]], float) - a2dm = masked_array(a2d, [[False, False],[True, False]]) + a2dm = masked_array(a2d, [[False, False], [True, False]]) a2da = average(a2d, axis=0) assert_equal(a2da, [0.5, 3.0]) a2dma = average(a2dm, axis=0) assert_equal(a2dma, [1.0, 3.0]) a2dma = average(a2dm, axis=None) - assert_equal(a2dma, 7./3.) + assert_equal(a2dma, 7. / 3.) a2dma = average(a2dm, axis=1) assert_equal(a2dma, [1.5, 4.0]) @@ -184,33 +184,33 @@ class TestConcatenator(TestCase): def test_1d(self): "Tests mr_ on 1D arrays." - assert_array_equal(mr_[1,2,3,4,5,6],array([1,2,3,4,5,6])) + assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6])) b = ones(5) - m = [1,0,0,0,0] - d = masked_array(b,mask=m) - c = mr_[d,0,0,d] - self.assertTrue(isinstance(c,MaskedArray) or isinstance(c,core.MaskedArray)) - assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1]) - assert_array_equal(c.mask, mr_[m,0,0,m]) + m = [1, 0, 0, 0, 0] + d = masked_array(b, mask=m) + c = mr_[d, 0, 0, d] + self.assertTrue(isinstance(c, MaskedArray) or isinstance(c, core.MaskedArray)) + assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1]) + assert_array_equal(c.mask, mr_[m, 0, 0, m]) def test_2d(self): "Tests mr_ on 2D arrays." - a_1 = rand(5,5) - a_2 = rand(5,5) - m_1 = np.round_(rand(5,5),0) - m_2 = np.round_(rand(5,5),0) - b_1 = masked_array(a_1,mask=m_1) - b_2 = masked_array(a_2,mask=m_2) - d = mr_['1',b_1,b_2] # append columns - self.assertTrue(d.shape == (5,10)) - assert_array_equal(d[:,:5],b_1) - assert_array_equal(d[:,5:],b_2) - assert_array_equal(d.mask, np.r_['1',m_1,m_2]) - d = mr_[b_1,b_2] - self.assertTrue(d.shape == (10,5)) - assert_array_equal(d[:5,:],b_1) - assert_array_equal(d[5:,:],b_2) - assert_array_equal(d.mask, np.r_[m_1,m_2]) + a_1 = rand(5, 5) + a_2 = rand(5, 5) + m_1 = np.round_(rand(5, 5), 0) + m_2 = np.round_(rand(5, 5), 0) + b_1 = masked_array(a_1, mask=m_1) + b_2 = masked_array(a_2, mask=m_2) + d = mr_['1', b_1, b_2] # append columns + self.assertTrue(d.shape == (5, 10)) + assert_array_equal(d[:, :5], b_1) + assert_array_equal(d[:, 5:], b_2) + assert_array_equal(d.mask, np.r_['1', m_1, m_2]) + d = mr_[b_1, b_2] + self.assertTrue(d.shape == (10, 5)) + assert_array_equal(d[:5, :], b_1) + assert_array_equal(d[5:, :], b_2) + assert_array_equal(d.mask, np.r_[m_1, m_2]) @@ -256,26 +256,26 @@ class TestNotMasked(TestCase): def test_contiguous(self): "Tests notmasked_contiguous" - a = masked_array(np.arange(24).reshape(3,8), - mask=[[0,0,0,0,1,1,1,1], - [1,1,1,1,1,1,1,1], - [0,0,0,0,0,0,1,0],]) + a = masked_array(np.arange(24).reshape(3, 8), + mask=[[0, 0, 0, 0, 1, 1, 1, 1], + [1, 1, 1, 1, 1, 1, 1, 1], + [0, 0, 0, 0, 0, 0, 1, 0], ]) tmp = notmasked_contiguous(a, None) - assert_equal(tmp[-1], slice(23,23,None)) - assert_equal(tmp[-2], slice(16,21,None)) - assert_equal(tmp[-3], slice(0,3,None)) + assert_equal(tmp[-1], slice(23, 23, None)) + assert_equal(tmp[-2], slice(16, 21, None)) + assert_equal(tmp[-3], slice(0, 3, None)) # tmp = notmasked_contiguous(a, 0) self.assertTrue(len(tmp[-1]) == 1) self.assertTrue(tmp[-2] is None) - assert_equal(tmp[-3],tmp[-1]) + assert_equal(tmp[-3], tmp[-1]) self.assertTrue(len(tmp[0]) == 2) # tmp = notmasked_contiguous(a, 1) - assert_equal(tmp[0][-1], slice(0,3,None)) + assert_equal(tmp[0][-1], slice(0, 3, None)) self.assertTrue(tmp[1] is None) - assert_equal(tmp[2][-1], slice(7,7,None)) - assert_equal(tmp[2][-2], slice(0,5,None)) + assert_equal(tmp[2][-1], slice(7, 7, None)) + assert_equal(tmp[2][-2], slice(0, 5, None)) @@ -283,114 +283,114 @@ class Test2DFunctions(TestCase): "Tests 2D functions" def test_compress2d(self): "Tests compress2d" - x = array(np.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]]) - assert_equal(compress_rowcols(x), [[4,5],[7,8]] ) - assert_equal(compress_rowcols(x,0), [[3,4,5],[6,7,8]] ) - assert_equal(compress_rowcols(x,1), [[1,2],[4,5],[7,8]] ) - x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]]) - assert_equal(compress_rowcols(x), [[0,2],[6,8]] ) - assert_equal(compress_rowcols(x,0), [[0,1,2],[6,7,8]] ) - assert_equal(compress_rowcols(x,1), [[0,2],[3,5],[6,8]] ) - x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]]) - assert_equal(compress_rowcols(x), [[8]] ) - assert_equal(compress_rowcols(x,0), [[6,7,8]] ) - assert_equal(compress_rowcols(x,1,), [[2],[5],[8]] ) - x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]]) - assert_equal(compress_rowcols(x).size, 0 ) - assert_equal(compress_rowcols(x,0).size, 0 ) - assert_equal(compress_rowcols(x,1).size, 0 ) + x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + assert_equal(compress_rowcols(x), [[4, 5], [7, 8]]) + assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]]) + assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]]) + x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(compress_rowcols(x), [[0, 2], [6, 8]]) + assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]]) + assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(compress_rowcols(x), [[8]]) + assert_equal(compress_rowcols(x, 0), [[6, 7, 8]]) + assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + assert_equal(compress_rowcols(x).size, 0) + assert_equal(compress_rowcols(x, 0).size, 0) + assert_equal(compress_rowcols(x, 1).size, 0) # def test_mask_rowcols(self): "Tests mask_rowcols." - x = array(np.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]]) - assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,0,0],[1,0,0]] ) - assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[0,0,0],[0,0,0]] ) - assert_equal(mask_rowcols(x,1).mask, [[1,0,0],[1,0,0],[1,0,0]] ) - x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]]) - assert_equal(mask_rowcols(x).mask, [[0,1,0],[1,1,1],[0,1,0]] ) - assert_equal(mask_rowcols(x,0).mask, [[0,0,0],[1,1,1],[0,0,0]] ) - assert_equal(mask_rowcols(x,1).mask, [[0,1,0],[0,1,0],[0,1,0]] ) - x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]]) - assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,1,1],[1,1,0]] ) - assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[1,1,1],[0,0,0]] ) - assert_equal(mask_rowcols(x,1,).mask, [[1,1,0],[1,1,0],[1,1,0]] ) - x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]]) + x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) + assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [0, 0, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x, 1).mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) + x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x).mask, [[0, 1, 0], [1, 1, 1], [0, 1, 0]]) + assert_equal(mask_rowcols(x, 0).mask, [[0, 0, 0], [1, 1, 1], [0, 0, 0]]) + assert_equal(mask_rowcols(x, 1).mask, [[0, 1, 0], [0, 1, 0], [0, 1, 0]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]]) + assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 1, 1], [1, 1, 0]]) + assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [1, 1, 1], [0, 0, 0]]) + assert_equal(mask_rowcols(x, 1,).mask, [[1, 1, 0], [1, 1, 0], [1, 1, 0]]) + x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]]) self.assertTrue(mask_rowcols(x).all() is masked) - self.assertTrue(mask_rowcols(x,0).all() is masked) - self.assertTrue(mask_rowcols(x,1).all() is masked) + self.assertTrue(mask_rowcols(x, 0).all() is masked) + self.assertTrue(mask_rowcols(x, 1).all() is masked) self.assertTrue(mask_rowcols(x).mask.all()) - self.assertTrue(mask_rowcols(x,0).mask.all()) - self.assertTrue(mask_rowcols(x,1).mask.all()) + self.assertTrue(mask_rowcols(x, 0).mask.all()) + self.assertTrue(mask_rowcols(x, 1).mask.all()) # def test_dot(self): "Tests dot product" - n = np.arange(1,7) - # - m = [1,0,0,0,0,0] - a = masked_array(n, mask=m).reshape(2,3) - b = masked_array(n, mask=m).reshape(3,2) - c = dot(a,b,True) - assert_equal(c.mask, [[1,1],[1,0]]) - c = dot(b,a,True) - assert_equal(c.mask, [[1,1,1],[1,0,0],[1,0,0]]) - c = dot(a,b,False) + n = np.arange(1, 7) + # + m = [1, 0, 0, 0, 0, 0] + a = masked_array(n, mask=m).reshape(2, 3) + b = masked_array(n, mask=m).reshape(3, 2) + c = dot(a, b, True) + assert_equal(c.mask, [[1, 1], [1, 0]]) + c = dot(b, a, True) + assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]]) + c = dot(a, b, False) assert_equal(c, np.dot(a.filled(0), b.filled(0))) - c = dot(b,a,False) + c = dot(b, a, False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) # - m = [0,0,0,0,0,1] - a = masked_array(n, mask=m).reshape(2,3) - b = masked_array(n, mask=m).reshape(3,2) - c = dot(a,b,True) - assert_equal(c.mask,[[0,1],[1,1]]) - c = dot(b,a,True) - assert_equal(c.mask, [[0,0,1],[0,0,1],[1,1,1]]) - c = dot(a,b,False) + m = [0, 0, 0, 0, 0, 1] + a = masked_array(n, mask=m).reshape(2, 3) + b = masked_array(n, mask=m).reshape(3, 2) + c = dot(a, b, True) + assert_equal(c.mask, [[0, 1], [1, 1]]) + c = dot(b, a, True) + assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]]) + c = dot(a, b, False) assert_equal(c, np.dot(a.filled(0), b.filled(0))) - assert_equal(c, dot(a,b)) - c = dot(b,a,False) + assert_equal(c, dot(a, b)) + c = dot(b, a, False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) # - m = [0,0,0,0,0,0] - a = masked_array(n, mask=m).reshape(2,3) - b = masked_array(n, mask=m).reshape(3,2) - c = dot(a,b) - assert_equal(c.mask,nomask) - c = dot(b,a) - assert_equal(c.mask,nomask) - # - a = masked_array(n, mask=[1,0,0,0,0,0]).reshape(2,3) - b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2) - c = dot(a,b,True) - assert_equal(c.mask,[[1,1],[0,0]]) - c = dot(a,b,False) - assert_equal(c, np.dot(a.filled(0),b.filled(0))) - c = dot(b,a,True) - assert_equal(c.mask,[[1,0,0],[1,0,0],[1,0,0]]) - c = dot(b,a,False) - assert_equal(c, np.dot(b.filled(0),a.filled(0))) - # - a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3) - b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2) - c = dot(a,b,True) - assert_equal(c.mask,[[0,0],[1,1]]) - c = dot(a,b) - assert_equal(c, np.dot(a.filled(0),b.filled(0))) - c = dot(b,a,True) - assert_equal(c.mask,[[0,0,1],[0,0,1],[0,0,1]]) - c = dot(b,a,False) + m = [0, 0, 0, 0, 0, 0] + a = masked_array(n, mask=m).reshape(2, 3) + b = masked_array(n, mask=m).reshape(3, 2) + c = dot(a, b) + assert_equal(c.mask, nomask) + c = dot(b, a) + assert_equal(c.mask, nomask) + # + a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3) + b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) + c = dot(a, b, True) + assert_equal(c.mask, [[1, 1], [0, 0]]) + c = dot(a, b, False) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + c = dot(b, a, True) + assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]]) + c = dot(b, a, False) + assert_equal(c, np.dot(b.filled(0), a.filled(0))) + # + a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) + b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2) + c = dot(a, b, True) + assert_equal(c.mask, [[0, 0], [1, 1]]) + c = dot(a, b) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + c = dot(b, a, True) + assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]]) + c = dot(b, a, False) assert_equal(c, np.dot(b.filled(0), a.filled(0))) # - a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3) - b = masked_array(n, mask=[0,0,1,0,0,0]).reshape(3,2) - c = dot(a,b,True) - assert_equal(c.mask,[[1,0],[1,1]]) - c = dot(a,b,False) - assert_equal(c, np.dot(a.filled(0),b.filled(0))) - c = dot(b,a,True) - assert_equal(c.mask,[[0,0,1],[1,1,1],[0,0,1]]) - c = dot(b,a,False) - assert_equal(c, np.dot(b.filled(0),a.filled(0))) + a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3) + b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2) + c = dot(a, b, True) + assert_equal(c.mask, [[1, 0], [1, 1]]) + c = dot(a, b, False) + assert_equal(c, np.dot(a.filled(0), b.filled(0))) + c = dot(b, a, True) + assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]]) + c = dot(b, a, False) + assert_equal(c, np.dot(b.filled(0), a.filled(0))) @@ -398,51 +398,63 @@ class TestApplyAlongAxis(TestCase): # "Tests 2D functions" def test_3d(self): - a = arange(12.).reshape(2,2,3) + a = arange(12.).reshape(2, 2, 3) def myfunc(b): return b[1] - xa = apply_along_axis(myfunc,2,a) - assert_equal(xa,[[1,4],[7,10]]) + xa = apply_along_axis(myfunc, 2, a) + assert_equal(xa, [[1, 4], [7, 10]]) + +class TestApplyOverAxes(TestCase): + "Tests apply_over_axes" + def test_basic(self): + a = arange(24).reshape(2, 3, 4) + test = apply_over_axes(np.sum, a, [0, 2]) + ctrl = np.array([[[ 60], [ 92], [124]]]) + assert_equal(test, ctrl) + a[(a % 2).astype(np.bool)] = masked + test = apply_over_axes(np.sum, a, [0, 2]) + ctrl = np.array([[[ 30], [ 44], [60]]]) + class TestMedian(TestCase): # def test_2d(self): "Tests median w/ 2D" - (n,p) = (101,30) - x = masked_array(np.linspace(-1.,1.,n),) + (n, p) = (101, 30) + x = masked_array(np.linspace(-1., 1., n),) x[:10] = x[-10:] = masked - z = masked_array(np.empty((n,p), dtype=float)) - z[:,0] = x[:] + z = masked_array(np.empty((n, p), dtype=float)) + z[:, 0] = x[:] idx = np.arange(len(x)) - for i in range(1,p): + for i in range(1, p): np.random.shuffle(idx) - z[:,i] = x[idx] - assert_equal(median(z[:,0]), 0) + z[:, i] = x[idx] + assert_equal(median(z[:, 0]), 0) assert_equal(median(z), 0) assert_equal(median(z, axis=0), np.zeros(p)) assert_equal(median(z.T, axis=1), np.zeros(p)) # def test_2d_waxis(self): "Tests median w/ 2D arrays and different axis." - x = masked_array(np.arange(30).reshape(10,3)) + x = masked_array(np.arange(30).reshape(10, 3)) x[:3] = x[-3:] = masked assert_equal(median(x), 14.5) - assert_equal(median(x, axis=0), [13.5,14.5,15.5]) - assert_equal(median(x,axis=1), [0,0,0,10,13,16,19,0,0,0]) - assert_equal(median(x,axis=1).mask, [1,1,1,0,0,0,0,1,1,1]) + assert_equal(median(x, axis=0), [13.5, 14.5, 15.5]) + assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0]) + assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1]) # def test_3d(self): "Tests median w/ 3D" - x = np.ma.arange(24).reshape(3,4,2) - x[x%3==0] = masked - assert_equal(median(x,0), [[12,9],[6,15],[12,9],[18,15]]) - x.shape = (4,3,2) - assert_equal(median(x,0),[[99,10],[11,99],[13,14]]) - x = np.ma.arange(24).reshape(4,3,2) - x[x%5==0] = masked - assert_equal(median(x,0), [[12,10],[8,9],[16,17]]) + x = np.ma.arange(24).reshape(3, 4, 2) + x[x % 3 == 0] = masked + assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]]) + x.shape = (4, 3, 2) + assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]]) + x = np.ma.arange(24).reshape(4, 3, 2) + x[x % 5 == 0] = masked + assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]]) @@ -461,7 +473,7 @@ class TestCov(TestCase): def test_2d_wo_missing(self): "Test cov on 1 2D variable w/o missing values" - x = self.data.reshape(3,4) + x = self.data.reshape(3, 4) assert_almost_equal(np.cov(x), cov(x)) assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False)) assert_almost_equal(np.cov(x, rowvar=False, bias=True), @@ -495,19 +507,19 @@ class TestCov(TestCase): "Test cov on 2D variable w/ missing value" x = self.data x[-1] = masked - x = x.reshape(3,4) + x = x.reshape(3, 4) valid = np.logical_not(getmaskarray(x)).astype(int) frac = np.dot(valid, valid.T) - xf = (x - x.mean(1)[:,None]).filled(0) - assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1]-1) / (frac - 1.)) + xf = (x - x.mean(1)[:, None]).filled(0) + assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1] - 1) / (frac - 1.)) assert_almost_equal(cov(x, bias=True), np.cov(xf, bias=True) * x.shape[1] / frac) frac = np.dot(valid.T, valid) xf = (x - x.mean(0)).filled(0) assert_almost_equal(cov(x, rowvar=False), - np.cov(xf, rowvar=False) * (x.shape[0]-1)/(frac - 1.)) + np.cov(xf, rowvar=False) * (x.shape[0] - 1) / (frac - 1.)) assert_almost_equal(cov(x, rowvar=False, bias=True), - np.cov(xf, rowvar=False, bias=True) * x.shape[0]/frac) + np.cov(xf, rowvar=False, bias=True) * x.shape[0] / frac) @@ -527,7 +539,7 @@ class TestCorrcoef(TestCase): def test_2d_wo_missing(self): "Test corrcoef on 1 2D variable w/o missing values" - x = self.data.reshape(3,4) + x = self.data.reshape(3, 4) assert_almost_equal(np.corrcoef(x), corrcoef(x)) assert_almost_equal(np.corrcoef(x, rowvar=False), corrcoef(x, rowvar=False)) @@ -562,11 +574,11 @@ class TestCorrcoef(TestCase): "Test corrcoef on 2D variable w/ missing value" x = self.data x[-1] = masked - x = x.reshape(3,4) + x = x.reshape(3, 4) test = corrcoef(x) control = np.corrcoef(x) - assert_almost_equal(test[:-1,:-1], control[:-1,:-1]) + assert_almost_equal(test[:-1, :-1], control[:-1, :-1]) @@ -576,27 +588,27 @@ class TestPolynomial(TestCase): "Tests polyfit" # On ndarrays x = np.random.rand(10) - y = np.random.rand(20).reshape(-1,2) - assert_almost_equal(polyfit(x,y,3),np.polyfit(x,y,3)) + y = np.random.rand(20).reshape(-1, 2) + assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3)) # ON 1D maskedarrays x = x.view(MaskedArray) x[0] = masked y = y.view(MaskedArray) - y[0,0] = y[-1,-1] = masked + y[0, 0] = y[-1, -1] = masked # - (C,R,K,S,D) = polyfit(x,y[:,0],3,full=True) - (c,r,k,s,d) = np.polyfit(x[1:], y[1:,0].compressed(), 3, full=True) - for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)): + (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True) + (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3, full=True) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) # - (C,R,K,S,D) = polyfit(x,y[:,-1],3,full=True) - (c,r,k,s,d) = np.polyfit(x[1:-1], y[1:-1,-1], 3, full=True) - for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)): + (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True) + (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) # - (C,R,K,S,D) = polyfit(x,y,3,full=True) - (c,r,k,s,d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True) - for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)): + (C, R, K, S, D) = polyfit(x, y, 3, full=True) + (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True) + for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)): assert_almost_equal(a, a_) @@ -632,7 +644,7 @@ class TestArraySetOps(TestCase): "Test all masked" data = masked_array([1, 1, 1], mask=True) test = unique(data, return_index=True, return_inverse=True) - assert_equal(test[0], masked_array([1,], mask=[True])) + assert_equal(test[0], masked_array([1, ], mask=[True])) assert_equal(test[1], [0]) assert_equal(test[2], [0, 0, 0]) # @@ -642,10 +654,10 @@ class TestArraySetOps(TestCase): assert_equal(test[0], masked_array(masked)) assert_equal(test[1], [0]) assert_equal(test[2], [0]) - + def test_ediff1d(self): "Tests mediff1d" - x = masked_array(np.arange(5), mask=[1,0,0,0,1]) + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) control = array([1, 1, 1, 4], mask=[1, 0, 0, 1]) test = ediff1d(x) assert_equal(test, control) @@ -654,14 +666,14 @@ class TestArraySetOps(TestCase): # def test_ediff1d_tobegin(self): "Test ediff1d w/ to_begin" - x = masked_array(np.arange(5), mask=[1,0,0,0,1]) + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) test = ediff1d(x, to_begin=masked) control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) # - test = ediff1d(x, to_begin=[1,2,3]) + test = ediff1d(x, to_begin=[1, 2, 3]) control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1]) assert_equal(test, control) assert_equal(test.data, control.data) @@ -669,14 +681,14 @@ class TestArraySetOps(TestCase): # def test_ediff1d_toend(self): "Test ediff1d w/ to_end" - x = masked_array(np.arange(5), mask=[1,0,0,0,1]) + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) test = ediff1d(x, to_end=masked) control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) # - test = ediff1d(x, to_end=[1,2,3]) + test = ediff1d(x, to_end=[1, 2, 3]) control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0]) assert_equal(test, control) assert_equal(test.data, control.data) @@ -684,14 +696,14 @@ class TestArraySetOps(TestCase): # def test_ediff1d_tobegin_toend(self): "Test ediff1d w/ to_begin and to_end" - x = masked_array(np.arange(5), mask=[1,0,0,0,1]) + x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1]) test = ediff1d(x, to_end=masked, to_begin=masked) control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) # - test = ediff1d(x, to_end=[1,2,3], to_begin=masked) + test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked) control = array([0, 1, 1, 1, 4, 1, 2, 3], mask=[1, 1, 0, 0, 1, 0, 0, 0]) assert_equal(test, control) assert_equal(test.data, control.data) @@ -735,8 +747,8 @@ class TestArraySetOps(TestCase): test = setxor1d(a, b) assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1])) # - a = array( [1, 2, 3] ) - b = array( [6, 5, 4] ) + a = array([1, 2, 3]) + b = array([6, 5, 4]) test = setxor1d(a, b) assert(isinstance(test, MaskedArray)) assert_equal(test, [1, 2, 3, 4, 5, 6]) @@ -747,10 +759,10 @@ class TestArraySetOps(TestCase): assert(isinstance(test, MaskedArray)) assert_equal(test, [1, 2, 3, 4, 5, 6]) # - assert_array_equal([], setxor1d([],[])) + assert_array_equal([], setxor1d([], [])) - def test_in1d( self ): + def test_in1d(self): "Test in1d" a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1]) b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) @@ -762,10 +774,10 @@ class TestArraySetOps(TestCase): test = in1d(a, b) assert_equal(test, [True, True, False, True, True]) # - assert_array_equal([], in1d([],[])) + assert_array_equal([], in1d([], [])) - def test_union1d( self ): + def test_union1d(self): "Test union1d" a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1]) b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1]) @@ -773,10 +785,10 @@ class TestArraySetOps(TestCase): control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1]) assert_equal(test, control) # - assert_array_equal([], union1d([],[])) + assert_array_equal([], union1d([], [])) - def test_setdiff1d( self ): + def test_setdiff1d(self): "Test setdiff1d" a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1]) b = array([2, 4, 3, 3, 2, 1, 5]) @@ -790,9 +802,9 @@ class TestArraySetOps(TestCase): def test_setdiff1d_char_array(self): "Test setdiff1d_charray" - a = np.array(['a','b','c']) - b = np.array(['a','b','s']) - assert_array_equal(setdiff1d(a,b), np.array(['c'])) + a = np.array(['a', 'b', 'c']) + b = np.array(['a', 'b', 's']) + assert_array_equal(setdiff1d(a, b), np.array(['c'])) class TestShapeBase(TestCase): |