summaryrefslogtreecommitdiff
path: root/numpy/ma/tests/test_extras.py
diff options
context:
space:
mode:
authorpierregm <pierregm@localhost>2010-05-16 23:31:21 +0000
committerpierregm <pierregm@localhost>2010-05-16 23:31:21 +0000
commitea2be6e15d024fab1ef41713ef9eab4605c4ea3e (patch)
treeaf8bce8a14882752e720e78a5410105e409bd331 /numpy/ma/tests/test_extras.py
parent97a38c4a4233fb133b2f2fa8b4fad9e65657f572 (diff)
downloadnumpy-ea2be6e15d024fab1ef41713ef9eab4605c4ea3e.tar.gz
* Added `apply_over_axes` as requested in ticket #1480
Diffstat (limited to 'numpy/ma/tests/test_extras.py')
-rw-r--r--numpy/ma/tests/test_extras.py434
1 files changed, 223 insertions, 211 deletions
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py
index 9e2c48b50..d6cda7e70 100644
--- a/numpy/ma/tests/test_extras.py
+++ b/numpy/ma/tests/test_extras.py
@@ -9,7 +9,7 @@ Adapted from the original test_ma by Pierre Gerard-Marchant
__author__ = "Pierre GF Gerard-Marchant ($Author: jarrod.millman $)"
__version__ = '1.0'
__revision__ = "$Revision: 3473 $"
-__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
+__date__ = '$Date: 2007-10-29 17:18:13 +0200 (Mon, 29 Oct 2007) $'
import numpy as np
from numpy.testing import TestCase, run_module_suite
@@ -31,13 +31,13 @@ class TestGeneric(TestCase):
test = masked_all((2,), dtype=dt)
control = array([(0, 0), (0, 0)], mask=[(1, 1), (1, 1)], dtype=dt)
assert_equal(test, control)
- test = masked_all((2,2), dtype=dt)
+ test = masked_all((2, 2), dtype=dt)
control = array([[(0, 0), (0, 0)], [(0, 0), (0, 0)]],
mask=[[(1, 1), (1, 1)], [(1, 1), (1, 1)]],
dtype=dt)
assert_equal(test, control)
# Nested dtype
- dt = np.dtype([('a','f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
test = masked_all((2,), dtype=dt)
control = array([(1, (1, 1)), (1, (1, 1))],
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
@@ -46,7 +46,7 @@ class TestGeneric(TestCase):
control = array([(1, (1, 1)), (1, (1, 1))],
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
assert_equal(test, control)
- test = masked_all((1,1), dtype=dt)
+ test = masked_all((1, 1), dtype=dt)
control = array([[(1, (1, 1))]], mask=[[(1, (1, 1))]], dtype=dt)
assert_equal(test, control)
@@ -65,7 +65,7 @@ class TestGeneric(TestCase):
control = array([(10, 10), (10, 10)], mask=[(1, 1), (1, 1)], dtype=dt)
assert_equal(test, control)
# Nested dtype
- dt = np.dtype([('a','f'), ('b', [('ba', 'f'), ('bb', 'f')])])
+ dt = np.dtype([('a', 'f'), ('b', [('ba', 'f'), ('bb', 'f')])])
control = array([(1, (1, 1)), (1, (1, 1))],
mask=[(1, (1, 1)), (1, (1, 1))], dtype=dt)
test = masked_all_like(control)
@@ -85,7 +85,7 @@ class TestGeneric(TestCase):
a = masked_array(np.arange(10))
a[[0, 1, 2, 6, 8, 9]] = masked
test = clump_unmasked(a)
- control = [slice(3, 6), slice(7, 8),]
+ control = [slice(3, 6), slice(7, 8), ]
assert_equal(test, control)
@@ -94,7 +94,7 @@ class TestAverage(TestCase):
"Several tests of average. Why so many ? Good point..."
def test_testAverage1(self):
"Test of average."
- ott = array([0.,1.,2.,3.], mask=[True, False, False, False])
+ ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
assert_equal(2.0, average(ott, axis=0))
assert_equal(2.0, average(ott, weights=[1., 1., 2., 1.]))
result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1)
@@ -104,28 +104,28 @@ class TestAverage(TestCase):
assert_equal(average(ott, axis=0).mask, [True])
ott = array([0., 1., 2., 3.], mask=[True, False, False, False])
ott = ott.reshape(2, 2)
- ott[:,1] = masked
+ ott[:, 1] = masked
assert_equal(average(ott, axis=0), [2.0, 0.0])
assert_equal(average(ott, axis=1).mask[0], [True])
- assert_equal([2.,0.], average(ott, axis=0))
+ assert_equal([2., 0.], average(ott, axis=0))
result, wts = average(ott, axis=0, returned=1)
assert_equal(wts, [1., 0.])
def test_testAverage2(self):
"More tests of average."
- w1 = [0,1,1,1,1,0]
- w2 = [[0,1,1,1,1,0],[1,0,0,0,0,1]]
+ w1 = [0, 1, 1, 1, 1, 0]
+ w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]]
x = arange(6, dtype=float_)
assert_equal(average(x, axis=0), 2.5)
assert_equal(average(x, axis=0, weights=w1), 2.5)
- y = array([arange(6, dtype=float_), 2.0*arange(6)])
- assert_equal(average(y, None), np.add.reduce(np.arange(6))*3./12.)
- assert_equal(average(y, axis=0), np.arange(6) * 3./2.)
+ y = array([arange(6, dtype=float_), 2.0 * arange(6)])
+ assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)
+ assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.)
assert_equal(average(y, axis=1),
[average(x, axis=0), average(x, axis=0) * 2.0])
- assert_equal(average(y, None, weights=w2), 20./6.)
+ assert_equal(average(y, None, weights=w2), 20. / 6.)
assert_equal(average(y, axis=0, weights=w2),
- [0.,1.,2.,3.,4.,10.])
+ [0., 1., 2., 3., 4., 10.])
assert_equal(average(y, axis=1),
[average(x, axis=0), average(x, axis=0) * 2.0])
m1 = zeros(6)
@@ -139,11 +139,11 @@ class TestAverage(TestCase):
assert_equal(average(masked_array(x, m5), axis=0), 0.0)
assert_equal(count(average(masked_array(x, m4), axis=0)), 0)
z = masked_array(y, m3)
- assert_equal(average(z, None), 20./6.)
- assert_equal(average(z, axis=0), [0.,1.,99.,99.,4.0, 7.5])
+ assert_equal(average(z, None), 20. / 6.)
+ assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])
assert_equal(average(z, axis=1), [2.5, 5.0])
- assert_equal(average(z,axis=0, weights=w2),
- [0.,1., 99., 99., 4.0, 10.0])
+ assert_equal(average(z, axis=0, weights=w2),
+ [0., 1., 99., 99., 4.0, 10.0])
def test_testAverage3(self):
"Yet more tests of average!"
@@ -159,13 +159,13 @@ class TestAverage(TestCase):
r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1)
assert_equal(shape(w2), shape(r2))
a2d = array([[1, 2], [0, 4]], float)
- a2dm = masked_array(a2d, [[False, False],[True, False]])
+ a2dm = masked_array(a2d, [[False, False], [True, False]])
a2da = average(a2d, axis=0)
assert_equal(a2da, [0.5, 3.0])
a2dma = average(a2dm, axis=0)
assert_equal(a2dma, [1.0, 3.0])
a2dma = average(a2dm, axis=None)
- assert_equal(a2dma, 7./3.)
+ assert_equal(a2dma, 7. / 3.)
a2dma = average(a2dm, axis=1)
assert_equal(a2dma, [1.5, 4.0])
@@ -184,33 +184,33 @@ class TestConcatenator(TestCase):
def test_1d(self):
"Tests mr_ on 1D arrays."
- assert_array_equal(mr_[1,2,3,4,5,6],array([1,2,3,4,5,6]))
+ assert_array_equal(mr_[1, 2, 3, 4, 5, 6], array([1, 2, 3, 4, 5, 6]))
b = ones(5)
- m = [1,0,0,0,0]
- d = masked_array(b,mask=m)
- c = mr_[d,0,0,d]
- self.assertTrue(isinstance(c,MaskedArray) or isinstance(c,core.MaskedArray))
- assert_array_equal(c,[1,1,1,1,1,0,0,1,1,1,1,1])
- assert_array_equal(c.mask, mr_[m,0,0,m])
+ m = [1, 0, 0, 0, 0]
+ d = masked_array(b, mask=m)
+ c = mr_[d, 0, 0, d]
+ self.assertTrue(isinstance(c, MaskedArray) or isinstance(c, core.MaskedArray))
+ assert_array_equal(c, [1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1])
+ assert_array_equal(c.mask, mr_[m, 0, 0, m])
def test_2d(self):
"Tests mr_ on 2D arrays."
- a_1 = rand(5,5)
- a_2 = rand(5,5)
- m_1 = np.round_(rand(5,5),0)
- m_2 = np.round_(rand(5,5),0)
- b_1 = masked_array(a_1,mask=m_1)
- b_2 = masked_array(a_2,mask=m_2)
- d = mr_['1',b_1,b_2] # append columns
- self.assertTrue(d.shape == (5,10))
- assert_array_equal(d[:,:5],b_1)
- assert_array_equal(d[:,5:],b_2)
- assert_array_equal(d.mask, np.r_['1',m_1,m_2])
- d = mr_[b_1,b_2]
- self.assertTrue(d.shape == (10,5))
- assert_array_equal(d[:5,:],b_1)
- assert_array_equal(d[5:,:],b_2)
- assert_array_equal(d.mask, np.r_[m_1,m_2])
+ a_1 = rand(5, 5)
+ a_2 = rand(5, 5)
+ m_1 = np.round_(rand(5, 5), 0)
+ m_2 = np.round_(rand(5, 5), 0)
+ b_1 = masked_array(a_1, mask=m_1)
+ b_2 = masked_array(a_2, mask=m_2)
+ d = mr_['1', b_1, b_2] # append columns
+ self.assertTrue(d.shape == (5, 10))
+ assert_array_equal(d[:, :5], b_1)
+ assert_array_equal(d[:, 5:], b_2)
+ assert_array_equal(d.mask, np.r_['1', m_1, m_2])
+ d = mr_[b_1, b_2]
+ self.assertTrue(d.shape == (10, 5))
+ assert_array_equal(d[:5, :], b_1)
+ assert_array_equal(d[5:, :], b_2)
+ assert_array_equal(d.mask, np.r_[m_1, m_2])
@@ -256,26 +256,26 @@ class TestNotMasked(TestCase):
def test_contiguous(self):
"Tests notmasked_contiguous"
- a = masked_array(np.arange(24).reshape(3,8),
- mask=[[0,0,0,0,1,1,1,1],
- [1,1,1,1,1,1,1,1],
- [0,0,0,0,0,0,1,0],])
+ a = masked_array(np.arange(24).reshape(3, 8),
+ mask=[[0, 0, 0, 0, 1, 1, 1, 1],
+ [1, 1, 1, 1, 1, 1, 1, 1],
+ [0, 0, 0, 0, 0, 0, 1, 0], ])
tmp = notmasked_contiguous(a, None)
- assert_equal(tmp[-1], slice(23,23,None))
- assert_equal(tmp[-2], slice(16,21,None))
- assert_equal(tmp[-3], slice(0,3,None))
+ assert_equal(tmp[-1], slice(23, 23, None))
+ assert_equal(tmp[-2], slice(16, 21, None))
+ assert_equal(tmp[-3], slice(0, 3, None))
#
tmp = notmasked_contiguous(a, 0)
self.assertTrue(len(tmp[-1]) == 1)
self.assertTrue(tmp[-2] is None)
- assert_equal(tmp[-3],tmp[-1])
+ assert_equal(tmp[-3], tmp[-1])
self.assertTrue(len(tmp[0]) == 2)
#
tmp = notmasked_contiguous(a, 1)
- assert_equal(tmp[0][-1], slice(0,3,None))
+ assert_equal(tmp[0][-1], slice(0, 3, None))
self.assertTrue(tmp[1] is None)
- assert_equal(tmp[2][-1], slice(7,7,None))
- assert_equal(tmp[2][-2], slice(0,5,None))
+ assert_equal(tmp[2][-1], slice(7, 7, None))
+ assert_equal(tmp[2][-2], slice(0, 5, None))
@@ -283,114 +283,114 @@ class Test2DFunctions(TestCase):
"Tests 2D functions"
def test_compress2d(self):
"Tests compress2d"
- x = array(np.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
- assert_equal(compress_rowcols(x), [[4,5],[7,8]] )
- assert_equal(compress_rowcols(x,0), [[3,4,5],[6,7,8]] )
- assert_equal(compress_rowcols(x,1), [[1,2],[4,5],[7,8]] )
- x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
- assert_equal(compress_rowcols(x), [[0,2],[6,8]] )
- assert_equal(compress_rowcols(x,0), [[0,1,2],[6,7,8]] )
- assert_equal(compress_rowcols(x,1), [[0,2],[3,5],[6,8]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
- assert_equal(compress_rowcols(x), [[8]] )
- assert_equal(compress_rowcols(x,0), [[6,7,8]] )
- assert_equal(compress_rowcols(x,1,), [[2],[5],[8]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
- assert_equal(compress_rowcols(x).size, 0 )
- assert_equal(compress_rowcols(x,0).size, 0 )
- assert_equal(compress_rowcols(x,1).size, 0 )
+ x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[4, 5], [7, 8]])
+ assert_equal(compress_rowcols(x, 0), [[3, 4, 5], [6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1), [[1, 2], [4, 5], [7, 8]])
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[0, 2], [6, 8]])
+ assert_equal(compress_rowcols(x, 0), [[0, 1, 2], [6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1), [[0, 2], [3, 5], [6, 8]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(compress_rowcols(x), [[8]])
+ assert_equal(compress_rowcols(x, 0), [[6, 7, 8]])
+ assert_equal(compress_rowcols(x, 1,), [[2], [5], [8]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
+ assert_equal(compress_rowcols(x).size, 0)
+ assert_equal(compress_rowcols(x, 0).size, 0)
+ assert_equal(compress_rowcols(x, 1).size, 0)
#
def test_mask_rowcols(self):
"Tests mask_rowcols."
- x = array(np.arange(9).reshape(3,3), mask=[[1,0,0],[0,0,0],[0,0,0]])
- assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,0,0],[1,0,0]] )
- assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[0,0,0],[0,0,0]] )
- assert_equal(mask_rowcols(x,1).mask, [[1,0,0],[1,0,0],[1,0,0]] )
- x = array(x._data, mask=[[0,0,0],[0,1,0],[0,0,0]])
- assert_equal(mask_rowcols(x).mask, [[0,1,0],[1,1,1],[0,1,0]] )
- assert_equal(mask_rowcols(x,0).mask, [[0,0,0],[1,1,1],[0,0,0]] )
- assert_equal(mask_rowcols(x,1).mask, [[0,1,0],[0,1,0],[0,1,0]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,0]])
- assert_equal(mask_rowcols(x).mask, [[1,1,1],[1,1,1],[1,1,0]] )
- assert_equal(mask_rowcols(x,0).mask, [[1,1,1],[1,1,1],[0,0,0]] )
- assert_equal(mask_rowcols(x,1,).mask, [[1,1,0],[1,1,0],[1,1,0]] )
- x = array(x._data, mask=[[1,0,0],[0,1,0],[0,0,1]])
+ x = array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], [0, 0, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+ assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [0, 0, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1).mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+ x = array(x._data, mask=[[0, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask, [[0, 1, 0], [1, 1, 1], [0, 1, 0]])
+ assert_equal(mask_rowcols(x, 0).mask, [[0, 0, 0], [1, 1, 1], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1).mask, [[0, 1, 0], [0, 1, 0], [0, 1, 0]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 0]])
+ assert_equal(mask_rowcols(x).mask, [[1, 1, 1], [1, 1, 1], [1, 1, 0]])
+ assert_equal(mask_rowcols(x, 0).mask, [[1, 1, 1], [1, 1, 1], [0, 0, 0]])
+ assert_equal(mask_rowcols(x, 1,).mask, [[1, 1, 0], [1, 1, 0], [1, 1, 0]])
+ x = array(x._data, mask=[[1, 0, 0], [0, 1, 0], [0, 0, 1]])
self.assertTrue(mask_rowcols(x).all() is masked)
- self.assertTrue(mask_rowcols(x,0).all() is masked)
- self.assertTrue(mask_rowcols(x,1).all() is masked)
+ self.assertTrue(mask_rowcols(x, 0).all() is masked)
+ self.assertTrue(mask_rowcols(x, 1).all() is masked)
self.assertTrue(mask_rowcols(x).mask.all())
- self.assertTrue(mask_rowcols(x,0).mask.all())
- self.assertTrue(mask_rowcols(x,1).mask.all())
+ self.assertTrue(mask_rowcols(x, 0).mask.all())
+ self.assertTrue(mask_rowcols(x, 1).mask.all())
#
def test_dot(self):
"Tests dot product"
- n = np.arange(1,7)
- #
- m = [1,0,0,0,0,0]
- a = masked_array(n, mask=m).reshape(2,3)
- b = masked_array(n, mask=m).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask, [[1,1],[1,0]])
- c = dot(b,a,True)
- assert_equal(c.mask, [[1,1,1],[1,0,0],[1,0,0]])
- c = dot(a,b,False)
+ n = np.arange(1, 7)
+ #
+ m = [1, 0, 0, 0, 0, 0]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[1, 1], [1, 0]])
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[1, 1, 1], [1, 0, 0], [1, 0, 0]])
+ c = dot(a, b, False)
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
- c = dot(b,a,False)
+ c = dot(b, a, False)
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
#
- m = [0,0,0,0,0,1]
- a = masked_array(n, mask=m).reshape(2,3)
- b = masked_array(n, mask=m).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[0,1],[1,1]])
- c = dot(b,a,True)
- assert_equal(c.mask, [[0,0,1],[0,0,1],[1,1,1]])
- c = dot(a,b,False)
+ m = [0, 0, 0, 0, 0, 1]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[0, 1], [1, 1]])
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [1, 1, 1]])
+ c = dot(a, b, False)
assert_equal(c, np.dot(a.filled(0), b.filled(0)))
- assert_equal(c, dot(a,b))
- c = dot(b,a,False)
+ assert_equal(c, dot(a, b))
+ c = dot(b, a, False)
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
#
- m = [0,0,0,0,0,0]
- a = masked_array(n, mask=m).reshape(2,3)
- b = masked_array(n, mask=m).reshape(3,2)
- c = dot(a,b)
- assert_equal(c.mask,nomask)
- c = dot(b,a)
- assert_equal(c.mask,nomask)
- #
- a = masked_array(n, mask=[1,0,0,0,0,0]).reshape(2,3)
- b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[1,1],[0,0]])
- c = dot(a,b,False)
- assert_equal(c, np.dot(a.filled(0),b.filled(0)))
- c = dot(b,a,True)
- assert_equal(c.mask,[[1,0,0],[1,0,0],[1,0,0]])
- c = dot(b,a,False)
- assert_equal(c, np.dot(b.filled(0),a.filled(0)))
- #
- a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
- b = masked_array(n, mask=[0,0,0,0,0,0]).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[0,0],[1,1]])
- c = dot(a,b)
- assert_equal(c, np.dot(a.filled(0),b.filled(0)))
- c = dot(b,a,True)
- assert_equal(c.mask,[[0,0,1],[0,0,1],[0,0,1]])
- c = dot(b,a,False)
+ m = [0, 0, 0, 0, 0, 0]
+ a = masked_array(n, mask=m).reshape(2, 3)
+ b = masked_array(n, mask=m).reshape(3, 2)
+ c = dot(a, b)
+ assert_equal(c.mask, nomask)
+ c = dot(b, a)
+ assert_equal(c.mask, nomask)
+ #
+ a = masked_array(n, mask=[1, 0, 0, 0, 0, 0]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[1, 1], [0, 0]])
+ c = dot(a, b, False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[1, 0, 0], [1, 0, 0], [1, 0, 0]])
+ c = dot(b, a, False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
+ #
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 0, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[0, 0], [1, 1]])
+ c = dot(a, b)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[0, 0, 1], [0, 0, 1], [0, 0, 1]])
+ c = dot(b, a, False)
assert_equal(c, np.dot(b.filled(0), a.filled(0)))
#
- a = masked_array(n, mask=[0,0,0,0,0,1]).reshape(2,3)
- b = masked_array(n, mask=[0,0,1,0,0,0]).reshape(3,2)
- c = dot(a,b,True)
- assert_equal(c.mask,[[1,0],[1,1]])
- c = dot(a,b,False)
- assert_equal(c, np.dot(a.filled(0),b.filled(0)))
- c = dot(b,a,True)
- assert_equal(c.mask,[[0,0,1],[1,1,1],[0,0,1]])
- c = dot(b,a,False)
- assert_equal(c, np.dot(b.filled(0),a.filled(0)))
+ a = masked_array(n, mask=[0, 0, 0, 0, 0, 1]).reshape(2, 3)
+ b = masked_array(n, mask=[0, 0, 1, 0, 0, 0]).reshape(3, 2)
+ c = dot(a, b, True)
+ assert_equal(c.mask, [[1, 0], [1, 1]])
+ c = dot(a, b, False)
+ assert_equal(c, np.dot(a.filled(0), b.filled(0)))
+ c = dot(b, a, True)
+ assert_equal(c.mask, [[0, 0, 1], [1, 1, 1], [0, 0, 1]])
+ c = dot(b, a, False)
+ assert_equal(c, np.dot(b.filled(0), a.filled(0)))
@@ -398,51 +398,63 @@ class TestApplyAlongAxis(TestCase):
#
"Tests 2D functions"
def test_3d(self):
- a = arange(12.).reshape(2,2,3)
+ a = arange(12.).reshape(2, 2, 3)
def myfunc(b):
return b[1]
- xa = apply_along_axis(myfunc,2,a)
- assert_equal(xa,[[1,4],[7,10]])
+ xa = apply_along_axis(myfunc, 2, a)
+ assert_equal(xa, [[1, 4], [7, 10]])
+
+class TestApplyOverAxes(TestCase):
+ "Tests apply_over_axes"
+ def test_basic(self):
+ a = arange(24).reshape(2, 3, 4)
+ test = apply_over_axes(np.sum, a, [0, 2])
+ ctrl = np.array([[[ 60], [ 92], [124]]])
+ assert_equal(test, ctrl)
+ a[(a % 2).astype(np.bool)] = masked
+ test = apply_over_axes(np.sum, a, [0, 2])
+ ctrl = np.array([[[ 30], [ 44], [60]]])
+
class TestMedian(TestCase):
#
def test_2d(self):
"Tests median w/ 2D"
- (n,p) = (101,30)
- x = masked_array(np.linspace(-1.,1.,n),)
+ (n, p) = (101, 30)
+ x = masked_array(np.linspace(-1., 1., n),)
x[:10] = x[-10:] = masked
- z = masked_array(np.empty((n,p), dtype=float))
- z[:,0] = x[:]
+ z = masked_array(np.empty((n, p), dtype=float))
+ z[:, 0] = x[:]
idx = np.arange(len(x))
- for i in range(1,p):
+ for i in range(1, p):
np.random.shuffle(idx)
- z[:,i] = x[idx]
- assert_equal(median(z[:,0]), 0)
+ z[:, i] = x[idx]
+ assert_equal(median(z[:, 0]), 0)
assert_equal(median(z), 0)
assert_equal(median(z, axis=0), np.zeros(p))
assert_equal(median(z.T, axis=1), np.zeros(p))
#
def test_2d_waxis(self):
"Tests median w/ 2D arrays and different axis."
- x = masked_array(np.arange(30).reshape(10,3))
+ x = masked_array(np.arange(30).reshape(10, 3))
x[:3] = x[-3:] = masked
assert_equal(median(x), 14.5)
- assert_equal(median(x, axis=0), [13.5,14.5,15.5])
- assert_equal(median(x,axis=1), [0,0,0,10,13,16,19,0,0,0])
- assert_equal(median(x,axis=1).mask, [1,1,1,0,0,0,0,1,1,1])
+ assert_equal(median(x, axis=0), [13.5, 14.5, 15.5])
+ assert_equal(median(x, axis=1), [0, 0, 0, 10, 13, 16, 19, 0, 0, 0])
+ assert_equal(median(x, axis=1).mask, [1, 1, 1, 0, 0, 0, 0, 1, 1, 1])
#
def test_3d(self):
"Tests median w/ 3D"
- x = np.ma.arange(24).reshape(3,4,2)
- x[x%3==0] = masked
- assert_equal(median(x,0), [[12,9],[6,15],[12,9],[18,15]])
- x.shape = (4,3,2)
- assert_equal(median(x,0),[[99,10],[11,99],[13,14]])
- x = np.ma.arange(24).reshape(4,3,2)
- x[x%5==0] = masked
- assert_equal(median(x,0), [[12,10],[8,9],[16,17]])
+ x = np.ma.arange(24).reshape(3, 4, 2)
+ x[x % 3 == 0] = masked
+ assert_equal(median(x, 0), [[12, 9], [6, 15], [12, 9], [18, 15]])
+ x.shape = (4, 3, 2)
+ assert_equal(median(x, 0), [[99, 10], [11, 99], [13, 14]])
+ x = np.ma.arange(24).reshape(4, 3, 2)
+ x[x % 5 == 0] = masked
+ assert_equal(median(x, 0), [[12, 10], [8, 9], [16, 17]])
@@ -461,7 +473,7 @@ class TestCov(TestCase):
def test_2d_wo_missing(self):
"Test cov on 1 2D variable w/o missing values"
- x = self.data.reshape(3,4)
+ x = self.data.reshape(3, 4)
assert_almost_equal(np.cov(x), cov(x))
assert_almost_equal(np.cov(x, rowvar=False), cov(x, rowvar=False))
assert_almost_equal(np.cov(x, rowvar=False, bias=True),
@@ -495,19 +507,19 @@ class TestCov(TestCase):
"Test cov on 2D variable w/ missing value"
x = self.data
x[-1] = masked
- x = x.reshape(3,4)
+ x = x.reshape(3, 4)
valid = np.logical_not(getmaskarray(x)).astype(int)
frac = np.dot(valid, valid.T)
- xf = (x - x.mean(1)[:,None]).filled(0)
- assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1]-1) / (frac - 1.))
+ xf = (x - x.mean(1)[:, None]).filled(0)
+ assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1] - 1) / (frac - 1.))
assert_almost_equal(cov(x, bias=True),
np.cov(xf, bias=True) * x.shape[1] / frac)
frac = np.dot(valid.T, valid)
xf = (x - x.mean(0)).filled(0)
assert_almost_equal(cov(x, rowvar=False),
- np.cov(xf, rowvar=False) * (x.shape[0]-1)/(frac - 1.))
+ np.cov(xf, rowvar=False) * (x.shape[0] - 1) / (frac - 1.))
assert_almost_equal(cov(x, rowvar=False, bias=True),
- np.cov(xf, rowvar=False, bias=True) * x.shape[0]/frac)
+ np.cov(xf, rowvar=False, bias=True) * x.shape[0] / frac)
@@ -527,7 +539,7 @@ class TestCorrcoef(TestCase):
def test_2d_wo_missing(self):
"Test corrcoef on 1 2D variable w/o missing values"
- x = self.data.reshape(3,4)
+ x = self.data.reshape(3, 4)
assert_almost_equal(np.corrcoef(x), corrcoef(x))
assert_almost_equal(np.corrcoef(x, rowvar=False),
corrcoef(x, rowvar=False))
@@ -562,11 +574,11 @@ class TestCorrcoef(TestCase):
"Test corrcoef on 2D variable w/ missing value"
x = self.data
x[-1] = masked
- x = x.reshape(3,4)
+ x = x.reshape(3, 4)
test = corrcoef(x)
control = np.corrcoef(x)
- assert_almost_equal(test[:-1,:-1], control[:-1,:-1])
+ assert_almost_equal(test[:-1, :-1], control[:-1, :-1])
@@ -576,27 +588,27 @@ class TestPolynomial(TestCase):
"Tests polyfit"
# On ndarrays
x = np.random.rand(10)
- y = np.random.rand(20).reshape(-1,2)
- assert_almost_equal(polyfit(x,y,3),np.polyfit(x,y,3))
+ y = np.random.rand(20).reshape(-1, 2)
+ assert_almost_equal(polyfit(x, y, 3), np.polyfit(x, y, 3))
# ON 1D maskedarrays
x = x.view(MaskedArray)
x[0] = masked
y = y.view(MaskedArray)
- y[0,0] = y[-1,-1] = masked
+ y[0, 0] = y[-1, -1] = masked
#
- (C,R,K,S,D) = polyfit(x,y[:,0],3,full=True)
- (c,r,k,s,d) = np.polyfit(x[1:], y[1:,0].compressed(), 3, full=True)
- for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
+ (C, R, K, S, D) = polyfit(x, y[:, 0], 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:], y[1:, 0].compressed(), 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
assert_almost_equal(a, a_)
#
- (C,R,K,S,D) = polyfit(x,y[:,-1],3,full=True)
- (c,r,k,s,d) = np.polyfit(x[1:-1], y[1:-1,-1], 3, full=True)
- for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
+ (C, R, K, S, D) = polyfit(x, y[:, -1], 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, -1], 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
assert_almost_equal(a, a_)
#
- (C,R,K,S,D) = polyfit(x,y,3,full=True)
- (c,r,k,s,d) = np.polyfit(x[1:-1], y[1:-1,:], 3, full=True)
- for (a,a_) in zip((C,R,K,S,D),(c,r,k,s,d)):
+ (C, R, K, S, D) = polyfit(x, y, 3, full=True)
+ (c, r, k, s, d) = np.polyfit(x[1:-1], y[1:-1, :], 3, full=True)
+ for (a, a_) in zip((C, R, K, S, D), (c, r, k, s, d)):
assert_almost_equal(a, a_)
@@ -632,7 +644,7 @@ class TestArraySetOps(TestCase):
"Test all masked"
data = masked_array([1, 1, 1], mask=True)
test = unique(data, return_index=True, return_inverse=True)
- assert_equal(test[0], masked_array([1,], mask=[True]))
+ assert_equal(test[0], masked_array([1, ], mask=[True]))
assert_equal(test[1], [0])
assert_equal(test[2], [0, 0, 0])
#
@@ -642,10 +654,10 @@ class TestArraySetOps(TestCase):
assert_equal(test[0], masked_array(masked))
assert_equal(test[1], [0])
assert_equal(test[2], [0])
-
+
def test_ediff1d(self):
"Tests mediff1d"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
control = array([1, 1, 1, 4], mask=[1, 0, 0, 1])
test = ediff1d(x)
assert_equal(test, control)
@@ -654,14 +666,14 @@ class TestArraySetOps(TestCase):
#
def test_ediff1d_tobegin(self):
"Test ediff1d w/ to_begin"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
test = ediff1d(x, to_begin=masked)
control = array([0, 1, 1, 1, 4], mask=[1, 1, 0, 0, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
#
- test = ediff1d(x, to_begin=[1,2,3])
+ test = ediff1d(x, to_begin=[1, 2, 3])
control = array([1, 2, 3, 1, 1, 1, 4], mask=[0, 0, 0, 1, 0, 0, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
@@ -669,14 +681,14 @@ class TestArraySetOps(TestCase):
#
def test_ediff1d_toend(self):
"Test ediff1d w/ to_end"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
test = ediff1d(x, to_end=masked)
control = array([1, 1, 1, 4, 0], mask=[1, 0, 0, 1, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
#
- test = ediff1d(x, to_end=[1,2,3])
+ test = ediff1d(x, to_end=[1, 2, 3])
control = array([1, 1, 1, 4, 1, 2, 3], mask=[1, 0, 0, 1, 0, 0, 0])
assert_equal(test, control)
assert_equal(test.data, control.data)
@@ -684,14 +696,14 @@ class TestArraySetOps(TestCase):
#
def test_ediff1d_tobegin_toend(self):
"Test ediff1d w/ to_begin and to_end"
- x = masked_array(np.arange(5), mask=[1,0,0,0,1])
+ x = masked_array(np.arange(5), mask=[1, 0, 0, 0, 1])
test = ediff1d(x, to_end=masked, to_begin=masked)
control = array([0, 1, 1, 1, 4, 0], mask=[1, 1, 0, 0, 1, 1])
assert_equal(test, control)
assert_equal(test.data, control.data)
assert_equal(test.mask, control.mask)
#
- test = ediff1d(x, to_end=[1,2,3], to_begin=masked)
+ test = ediff1d(x, to_end=[1, 2, 3], to_begin=masked)
control = array([0, 1, 1, 1, 4, 1, 2, 3], mask=[1, 1, 0, 0, 1, 0, 0, 0])
assert_equal(test, control)
assert_equal(test.data, control.data)
@@ -735,8 +747,8 @@ class TestArraySetOps(TestCase):
test = setxor1d(a, b)
assert_equal(test, array([3, 4, 7, -1], mask=[0, 0, 0, 1]))
#
- a = array( [1, 2, 3] )
- b = array( [6, 5, 4] )
+ a = array([1, 2, 3])
+ b = array([6, 5, 4])
test = setxor1d(a, b)
assert(isinstance(test, MaskedArray))
assert_equal(test, [1, 2, 3, 4, 5, 6])
@@ -747,10 +759,10 @@ class TestArraySetOps(TestCase):
assert(isinstance(test, MaskedArray))
assert_equal(test, [1, 2, 3, 4, 5, 6])
#
- assert_array_equal([], setxor1d([],[]))
+ assert_array_equal([], setxor1d([], []))
- def test_in1d( self ):
+ def test_in1d(self):
"Test in1d"
a = array([1, 2, 5, 7, -1], mask=[0, 0, 0, 0, 1])
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
@@ -762,10 +774,10 @@ class TestArraySetOps(TestCase):
test = in1d(a, b)
assert_equal(test, [True, True, False, True, True])
#
- assert_array_equal([], in1d([],[]))
+ assert_array_equal([], in1d([], []))
- def test_union1d( self ):
+ def test_union1d(self):
"Test union1d"
a = array([1, 2, 5, 7, 5, -1], mask=[0, 0, 0, 0, 0, 1])
b = array([1, 2, 3, 4, 5, -1], mask=[0, 0, 0, 0, 0, 1])
@@ -773,10 +785,10 @@ class TestArraySetOps(TestCase):
control = array([1, 2, 3, 4, 5, 7, -1], mask=[0, 0, 0, 0, 0, 0, 1])
assert_equal(test, control)
#
- assert_array_equal([], union1d([],[]))
+ assert_array_equal([], union1d([], []))
- def test_setdiff1d( self ):
+ def test_setdiff1d(self):
"Test setdiff1d"
a = array([6, 5, 4, 7, 7, 1, 2, 1], mask=[0, 0, 0, 0, 0, 0, 0, 1])
b = array([2, 4, 3, 3, 2, 1, 5])
@@ -790,9 +802,9 @@ class TestArraySetOps(TestCase):
def test_setdiff1d_char_array(self):
"Test setdiff1d_charray"
- a = np.array(['a','b','c'])
- b = np.array(['a','b','s'])
- assert_array_equal(setdiff1d(a,b), np.array(['c']))
+ a = np.array(['a', 'b', 'c'])
+ b = np.array(['a', 'b', 's'])
+ assert_array_equal(setdiff1d(a, b), np.array(['c']))
class TestShapeBase(TestCase):